
2022
Web Almanac

HTTP Archive’s annual
state of the web report

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Table of Contents

Part I. Page Content

Chapter 1: CSS ..1

Chapter 2: JavaScript ...71

Chapter 3: Markup .. 113

Chapter 4: Structured Data .. 131

Chapter 5: Fonts .. 171

Chapter 6: Media ... 207

Chapter 7: WebAssembly .. 243

Chapter 8: Third Parties ... 253

Chapter 9: Interoperability ... 275

Part II. User Experience

Chapter 10: SEO .. 301

Chapter 11: Accessibility ... 339

Chapter 12: Performance .. 377

Chapter 13: Privacy .. 423

Chapter 14: Security .. 449

Chapter 15: Mobile Web .. 491

Chapter 16: Capabilities ... 515

Chapter 17: PWA .. 531

Part III. Content Publishing

Chapter 18: CMS ... 557

Chapter 19: Jamstack .. 589

Chapter 20: Sustainability ... 609

Part IV. Content Distribution

Chapter 21: Page Weight ... 651

Chapter 22: CDN ... 673

Chapter 23: HTTP ... 695

Table of Contents

2022 Web Almanac by HTTP Archive i

Appendices

Methodology .. 709

Contributors ... 719

Table of Contents

ii 2022 Web Almanac by HTTP Archive

Part I Chapter 1

CSS

Written by Rachel Andrew
Reviewed by Chris Lilley and Jens Oliver Meiert
Analyzed and edited by Rick Viscomi

Introduction

CSS is the language used to lay out and format web pages and other media. It is one of the three

main languages of the web, joining HTML, which is used for structure, and JavaScript for

behavior.

The past few years have seen a flurry of new CSS features. Many of these have taken inspiration

from things developers were already doing with JavaScript or in preprocessors, while others

provide methods of doing things that were impossible a few years ago. Having new features

available is one thing, but are developers actually using them in their production web pages and

applications? It is this question we will try to answer with data.

In this chapter, we use the data to find out what developers actually use in production, rather

than the features most talked about on Twitter, showcased at conferences, or found in clever

demos. We can see which of the new features are being adopted, which old techniques are

falling out of use, and the legacy techniques that are stubbornly remaining in our stylesheets.

Part I Chapter 1 : CSS

2022 Web Almanac by HTTP Archive 1

Usage

Each year, we see that CSS grows in size, and 2022 was no exception.

Other than the 25th percentile, which dropped a percentage point, each percentile showed a

small increase in size. At the 90th percentile the increase was almost 7%, a similar increase to

that seen between 20201 and 20212. Mobile stylesheets remain slightly smaller than those

served to desktop.

The desktop page with the greatest CSS weight was slightly smaller than last year at 62,631 KB.

The largest mobile stylesheet had risen from 17,823 KB to 78,543 KB—thankfully this was an

exception.

Figure 1.1. Distribution of the stylesheet transfer size by page.

1. https://almanac.httparchive.org/en/2020/css
2. https://almanac.httparchive.org/en/2021/css

Part I Chapter 1 : CSS

2 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/css/stylesheet-transfer-size.png
https://almanac.httparchive.org/static/images/2022/css/stylesheet-transfer-size.png
https://almanac.httparchive.org/en/2020/css
https://almanac.httparchive.org/en/2021/css

The number of stylesheets per page has remained almost identical to 2021, with an increase of

one for mobile at the 50th percentile.

Last year the record was broken for the number of stylesheets loaded by a single page at 2,368.

This year we found one site loading 1,387 stylesheets on mobile, still a significant amount.

Figure 1.2. Distribution of the number of stylesheets per page.

Part I Chapter 1 : CSS

2022 Web Almanac by HTTP Archive 3

https://almanac.httparchive.org/static/images/2022/css/stylesheet-count.png
https://almanac.httparchive.org/static/images/2022/css/stylesheet-count.png

Taking a look at the number of style rules in a page showed an increase across all percentiles;

the lower percentiles showing more rules for mobile, the higher percentiles more for desktop.

These increases are substantial. Desktop rules for the 50th percentile increased by 130 rules,

and the 90th percentile by 202.

Figure 1.3. Distribution of the total number of style rules per page.

Figure 1.4. Distribution of the number of rules per stylesheet.

Part I Chapter 1 : CSS

4 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/css/rules-per-page.png
https://almanac.httparchive.org/static/images/2022/css/rules-per-page.png
https://almanac.httparchive.org/static/images/2022/css/rules-per-stylesheet.png
https://almanac.httparchive.org/static/images/2022/css/rules-per-stylesheet.png

We can see from the total number of stylesheets loaded, that typically people are breaking

their CSS down into multiple stylesheets. At the 50th percentile this works out as 31 rules per

stylesheet, growing to 276 rules on desktop and 285 rules for mobile at the 90th percentile.

Selectors and the cascade

2022 saw a shake-up with regard to the cascade with @layer landing in all engines. This new

at-rule enables the grouping of selectors into layers, the order of precedence of the layers can

then be managed.

It’s a little early to see widespread usage of this new method of managing the cascade, but let’s

take a look at how selector usage has evolved.

Part I Chapter 1 : CSS

2022 Web Almanac by HTTP Archive 5

https://developer.mozilla.org/docs/Web/CSS/@layer
https://developer.mozilla.org/docs/Web/CSS/@layer

Class names

As in 2020 and 2021 the most popular class name on the web is active . The fa , fa-*
prefixes for Font Awesome still coming second and third. However, wp-* class names have

crept up the rankings, moving to fourth place. They now show up on 31% of pages, having been

at 20% in 2021. We also see class names such as has-large-font-size appearing, these are

used in the new WordPress Block Editor.

clearfix has disappeared from the top 20, it is now found on only 10% of pages, a very clear

Figure 1.5. The most popular class names by the percent of pages.

Part I Chapter 1 : CSS

6 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/css/top-selector-classes.png
https://almanac.httparchive.org/static/images/2022/css/top-selector-classes.png

indication that float-based layouts are vanishing from the web.

The name content is once again the most popular ID name, followed by footer , and

header . The IDs starting with fb_ indicate use of Facebook widgets. In 2021 IDs beginning

with rc- , indicating use of Google’s reCAPTCHA system were seen on 7% of pages, and are

still seen with the same frequency, despite being pushed out of the top ten by the Facebook ID

names.

Figure 1.6. The most popular ID names by percent of pages.

Part I Chapter 1 : CSS

2022 Web Almanac by HTTP Archive 7

https://almanac.httparchive.org/static/images/2022/css/top-selector-ids.png
https://almanac.httparchive.org/static/images/2022/css/top-selector-ids.png

!important

The use of !important has slightly increased for the top two percentiles this year. As

@layer usage takes hold, it will be interesting to see how this impacts the use of this property,

typically used to deal with specificity issues.

Figure 1.7. The distribution of the number of !important properties per page.

Part I Chapter 1 : CSS

8 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/css/important-adoption.png
https://almanac.httparchive.org/static/images/2022/css/important-adoption.png

In terms of what !important is applied to, the top properties remain unchanged. However,

position has fallen out of the top ten, to be replaced with font-size .

Figure 1.8. The top properties that !important is applied to by percent of pages.

Part I Chapter 1 : CSS

2022 Web Almanac by HTTP Archive 9

https://almanac.httparchive.org/static/images/2022/css/important-props.png
https://almanac.httparchive.org/static/images/2022/css/important-props.png

Selector specificity

Except for desktop at the 25th percentile, median specificity values are exactly the same as last

year, remaining constant over the past two years. These values indicate the flattened specificity

created by methodologies such as BEM3.

Figure 1.9. Distribution of the median specificity per page.

Percentile Desktop Mobile

10 0,1,0 0,1,0

25 0,1,2 0,1,3

50 0,2,0 0,2,0

75 0,2,0 0,2,0

90 0,3,0 0,3,0

3. https://en.bem.info/methodology/quick-start/

Part I Chapter 1 : CSS

10 2022 Web Almanac by HTTP Archive

https://en.bem.info/methodology/quick-start/

Pseudo-classes and -elements

Once again the user-action pseudo-classes :hover , :focus , and :active are in the top

three spots. The negation pseudo-class :not() also continues its rise in popularity, along with

:root , likely used to create custom properties.

Last year it was noted that :focus-visible , a way to style elements in focus in a way that

better matches user expectations, appeared in less than 1% of pages. The property has been

available in all three major engines since March 2022, and is now found on 10% of desktop and

9% of mobile pages.

Figure 1.10. Most popular pseudo-classes by percent of pages.

Part I Chapter 1 : CSS

2022 Web Almanac by HTTP Archive 11

https://almanac.httparchive.org/static/images/2022/css/pseudo-classes.png
https://almanac.httparchive.org/static/images/2022/css/pseudo-classes.png

We filter out any prefixed, and therefore browser-specific, pseudo-elements. These are

typically used to select interface components or parts of browser chrome, and we are

interested in the pseudo-elements developers are actually using.

The use of ::before and ::after has increased since last year. These are used to insert

generated content into the document. By checking usage of the content property, it is

possible to see that this is most often being used to insert an empty string, used for styling

purposes. Generated content is one way to style a grid area without needing to add an element;

perhaps this has contributed to the rise in usage of these properties?

Use of the ::marker pseudo-element has now made 1%, showing that people are slowly

starting to take advantage of the ability to select and style list markers.

Figure 1.11. Most popular pseudo-elements by percent of pages.

Part I Chapter 1 : CSS

12 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/css/pseudo-elements.png
https://almanac.httparchive.org/static/images/2022/css/pseudo-elements.png

Attribute selectors

The most popular attribute selector is type , found on 54% of pages. The next most popular

attribute selectors are class on 37%, disabled on 25%, and dir on 17% of pages.

Values and Units

CSS provides multiple ways to specify values and units, either in set lengths, or calculations

Figure 1.12. Most popular attribute selectors by percent of pages.

Part I Chapter 1 : CSS

2022 Web Almanac by HTTP Archive 13

https://almanac.httparchive.org/static/images/2022/css/attribute-selectors.png
https://almanac.httparchive.org/static/images/2022/css/attribute-selectors.png

based on global keywords.

Length

Pixel lengths remain the most popular at 71%, the same percentage as in 2021. The spread of

usage remains roughly the same too.

Figure 1.13. Most popular <length> units by percent of pages.

Part I Chapter 1 : CSS

14 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/css/length-units.png
https://almanac.httparchive.org/static/images/2022/css/length-units.png

The up and down arrows on this chart show the change from the results in 20214. As seen last

year, in the majority of cases there is a shift away from using pixels, in favor of other length

units. Once again, the vertical-align property saw a huge drop in pixel and <number>
use, and a large rise in em use.

Figure 1.14. Distribution of length types per property.

Property px <number> em % rem pt

font-size (▲2%) 71% 2% (▼1%) 15% 5% (▲1%) 6% (▼1%) 2%

border-radius (▼1%) 64% (▼1%) 20% 3.13% (▲1%) 11% (▲2%) 2% 0%

line-height (▼5%) 49% (▲4%) 35% 12.94% (▼1%) 2% (▲1%) 1% 0%

border (▼1%) 70% 28% 2% 0% 0% 0%

text-indent (▼5%) 26% (▲13%) 65% (▼4%) 5% (▼3%) 5% 0% 0%

vertical-align (▼26%) 3% (▼9%) 3% (▲39%) 94% 0% 0% 0%

gap (▲4%) 25% (▼6%) 10% (▲32%) 33% 0% (▼31%) 32% 0%

margin-inline-start (▼31%) 7% (▲3%) 49% (▲30%) 44% 0% 0% 0%

grid-gap (▲5%) 68% (▼1%) 10% (▼2%) 7% 0% (▼1%) 15% 0%

margin-block-end (▼1%) 3% (▲54%) 85% (▼53%) 12% 0% 0% 0%

padding-inline-start (▼4%) 29% (▲11%) 16% (▼10%) 53% 0% (▲3%) 3% 0%

mask-position (▲1%) 1% (▲3%) 3% (▼14%) 36% (▲10%) 60% 0% 0%

4. https://almanac.httparchive.org/en/2021/css#fig-15

Part I Chapter 1 : CSS

2022 Web Almanac by HTTP Archive 15

https://almanac.httparchive.org/en/2021/css#fig-15

While em remains the most popular method of sizing fonts, the swing to rem continues with a

small (just under two point) increase over last year.

There are a few properties that allow bare <number> units (for example, line-height), but

Figure 1.15. The most popular font-relative length units.

Figure 1.16. The units (or lack thereof) used on zero-length values.

Part I Chapter 1 : CSS

16 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/css/font-relative-length-units.png
https://almanac.httparchive.org/static/images/2022/css/font-relative-length-units.png
https://almanac.httparchive.org/static/images/2022/css/zero-length-units.png
https://almanac.httparchive.org/static/images/2022/css/zero-length-units.png

<length> values have a special case where a length of zero does not require a unit. When we

looked at all zero-length values, almost 87% of them omitted the unit, this is a small decrease

from last year. Nearly all of those zero lengths that included a unit used pixels (0px).

Calculations

As in previous years, the most popular use of calc() is in values for width. This use has

dropped 12% points, however, max-width has increased in popularity by 9 points.

Figure 1.17. The most popular properties using calc() functions.

Part I Chapter 1 : CSS

2022 Web Almanac by HTTP Archive 17

https://almanac.httparchive.org/static/images/2022/css/calc-props.png
https://almanac.httparchive.org/static/images/2022/css/calc-props.png

The percentage of sites using pixels in calculations has decreased 9 points, it is now level with

% usage at 42%. There is a significant increase in usage for other values, the viewport units vw
and vh both increased from 2% to 8% this year, em increased the same amount, and use of

rem doubled from 3% to 6%.

Figure 1.18. The most popular length units used in calc() functions.

Figure 1.19. The most popular operators used in calc() functions.

Part I Chapter 1 : CSS

18 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/css/calc-units.png
https://almanac.httparchive.org/static/images/2022/css/calc-units.png
https://almanac.httparchive.org/static/images/2022/css/calc-operators.png
https://almanac.httparchive.org/static/images/2022/css/calc-operators.png

Subtraction remains the clear favorite in terms of calculation operators, but all four top values

saw a drop since 2021, other than addition, which remained the same.

As last year, calc() values tend to be fairly simple. The majority using two values, such as the

common use case of subtracting a fixed length such as pixels from a percentage. There was a

small rise in one unit values, and a small drop in two units.

Figure 1.20. The number of unique units used in calc() values.

Part I Chapter 1 : CSS

2022 Web Almanac by HTTP Archive 19

https://almanac.httparchive.org/static/images/2022/css/calc-unit-complexity.png
https://almanac.httparchive.org/static/images/2022/css/calc-unit-complexity.png

Global keywords

Last year the use of global keywords had risen significantly, in 2022 inherit is found in the

same percentage of pages, however the other three values have increased in use. The newer

value of revert has increased from 1% to 4%.

Figure 1.21. Usage of global keyword values.

Part I Chapter 1 : CSS

20 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/css/keywords.png
https://almanac.httparchive.org/static/images/2022/css/keywords.png

Custom Properties

Custom properties (sometimes known as CSS variables) have seen a huge surge in use, the

growth between 2021 and 2022 is no exception. 43% of pages, for both desktop and mobile are

using custom properties and have at least one var() function.

Figure 1.22. Usage of custom properties over the past four years.

Part I Chapter 1 : CSS

2022 Web Almanac by HTTP Archive 21

https://almanac.httparchive.org/static/images/2022/css/custom-property-adoption.png
https://almanac.httparchive.org/static/images/2022/css/custom-property-adoption.png

As seen last year, WordPress is the driver for the most common custom property names, these

are easily identifiable by the –wp–* prefix. Following these, we once again found a lot of color

names –white , –blue , and so on, used to assign a particular shade of that color.

Figure 1.23. Source of common custom property names.

Part I Chapter 1 : CSS

22 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/css/custom-property-names.png
https://almanac.httparchive.org/static/images/2022/css/custom-property-names.png

Types

The value of a custom property includes a type. For example, --red: #EF2143 is assigning a

color value to --red , whereas --multiplier: 2.5 is assigning a number value. The types

have changed a little since last year. We know that setting a color is the most common use of

custom properties, and the amount of pages on which color types are found is increasing.

However, in terms of the share of usage, this has dropped from 40% to 30%. Entering this

distribution is calc() , and images as a value type.

Figure 1.24. Distribution of custom property value types.

Part I Chapter 1 : CSS

2022 Web Almanac by HTTP Archive 23

https://almanac.httparchive.org/static/images/2022/css/custom-property-value-types.png
https://almanac.httparchive.org/static/images/2022/css/custom-property-value-types.png

Properties

While the number of pages including these properties has increased, the properties that have

custom properties as a value have remained in roughly the same order as last year. Custom

properties are most likely to be used for color , unsurprisingly as creating color schemes is an

obvious use of this functionality. Using the var() function to set font-size has moved

from 10th place to 5th in the list however, and setting the alignment value of justify-
content has moved into the top ten. In 2021 5% of mobile, and 4% of desktop pages were

using custom properties to set this alignment value, this has jumped to 20%. From the data it

looks as if some of this increase is due to WordPress usage, 5% of pages use the

–navigation-layout-justify custom property, for example.

Figure 1.25. The most popular custom property properties by percent of pages.

Part I Chapter 1 : CSS

24 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/css/custom-property-props.png
https://almanac.httparchive.org/static/images/2022/css/custom-property-props.png

Functions

We saw that calc() has started to be notable as a value type for custom properties, and it is

by far the most commonly seen function used in this way. It is followed by linear-
gradient() and the rgba() function used to set RGB color values with an alpha channel.

After this are the various functions used for transitions and animations, showing a growing use

of custom properties in this area.

Complexity

It’s possible to include custom properties in the values of other custom properties. Consider

this example5 from the 2020 Web Almanac:

Figure 1.26. The most popular custom property functions by percent of pages.

5. https://almanac.httparchive.org/en/2020/css#complexity

Part I Chapter 1 : CSS

2022 Web Almanac by HTTP Archive 25

https://almanac.httparchive.org/static/images/2022/css/custom-property-functions.png
https://almanac.httparchive.org/static/images/2022/css/custom-property-functions.png
https://almanac.httparchive.org/en/2020/css#complexity

:root {

 --base-hue: 335; /* depth = 0 */

 --base-color: hsl(var(--base-hue) 90% 50%); /* depth = 1 */

 --background: linear-gradient(var(--base-color), black); /*

depth = 2 */

}

As the comments in the previous example show, the more that these sub-references are

chained together, the greater the depth of the custom property.

As seen in 2021, the vast majority of custom properties had a depth of zero, meaning that they

did not include the values of other custom properties in their value. There has been a small

increase in the number of properties with a depth of one, and a small decrease in the number

with a depth of two. However, it does not seem from the data that our use of custom properties

has become much more complex in the past year.

Figure 1.27. The distribution of custom property depth.

Part I Chapter 1 : CSS

26 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/css/custom-property-depth.png
https://almanac.httparchive.org/static/images/2022/css/custom-property-depth.png

Colors

The use of the time-honored six-digit #RRGGBB syntax remains unchanged since 2021, being

used in half of color declarations. Despite the widespread availability of eight-digit

#RRGGBBAA hex, the rgba() form is the most widely used way to add an alpha component,

likely because it was implemented in browsers much earlier.

The usage of other values showed a similar story; the web community hasn’t yet started to take

advantage of other color formats, even widely supported ones such as hsl() .

Figure 1.28. The most popular color formats by percent of occurrences.

Part I Chapter 1 : CSS

2022 Web Almanac by HTTP Archive 27

https://almanac.httparchive.org/static/images/2022/css/color-formats.png
https://almanac.httparchive.org/static/images/2022/css/color-formats.png

8% of pages use the keyword transparent , making it the most popular named color. 2% of

pages use other named colors, white being the most popular followed by black . At the

other end of the scale mediumspringgreen languishes as the least popular color.

Figure 1.29. The least popular named colors by number of occurrences.

Part I Chapter 1 : CSS

28 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/css/color-keywords.png
https://almanac.httparchive.org/static/images/2022/css/color-keywords.png

Alpha support and use

The rgba() function is the third most popular color format, used substantially more than the

rgb() form, presumably in order to make use of alpha channel support. We looked at the

occurrences of values with and without alpha support, to find that 77% of color formats used do

not have support for an alpha channel.

Figure 1.30. The most popular color formats by alpha support.

Part I Chapter 1 : CSS

2022 Web Almanac by HTTP Archive 29

https://almanac.httparchive.org/static/images/2022/css/color-formats-alpha.png
https://almanac.httparchive.org/static/images/2022/css/color-formats-alpha.png

As we would expect from other data, rgba() is the most popular alpha-supporting format in

use, followed by the transparent keyword. Other formats such as hsla() barely feature.

New color properties and values

There are interesting things happening in the world of color. In addition to new color spaces, we

have a number of color-related properties and values. We wondered if any of these were

making an impact on the data.

The accent-color property lets you add your brand color as an accent color to notoriously

hard-to-style form elements such as checkboxes, radio buttons, and range sliders. Perhaps due

to the fact it has only been available in all engines since March this year, it still shows less than

0.3% usage.

Another property becoming available in all engines this year is color-scheme , a property

that lets you specify in which color schemes (light or dark) a component can be rendered. This

property is, somewhat surprisingly, so far only found in 0.2% of pages.

Figure 1.31. Distribution of color formats by alpha support.

Part I Chapter 1 : CSS

30 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/css/color-formats-alpha-distribution.png
https://almanac.httparchive.org/static/images/2022/css/color-formats-alpha-distribution.png
https://web.dev/accent-color/
https://web.dev/accent-color/
https://developer.mozilla.org/docs/Web/CSS/color-scheme
https://developer.mozilla.org/docs/Web/CSS/color-scheme

Gradients and Images

Linear gradients continue as the leading choice, appearing on a slightly higher percentage of

pages than in 2021, however gradient use stays pretty much the same for the last two years.

There is still a very high frequency of prefix use when it comes to the linear-gradient
property, despite this having been supported unprefixed in all engines for over nine years.

Figure 1.32. The most popular gradient functions by percent of pages.

Part I Chapter 1 : CSS

2022 Web Almanac by HTTP Archive 31

https://almanac.httparchive.org/static/images/2022/css/gradient-functions.png
https://almanac.httparchive.org/static/images/2022/css/gradient-functions.png

Image formats

This chart breaks down the image formats of images loaded from CSS. It does not include

images loaded from HTML, just those that appear in a style rule. There has been a significant

swing away from PNG—down from 44% to 30%—with SVG and WebP each seeing an increase

of 6 percentage points.

Figure 1.33. Image formats as loaded from CSS.

Part I Chapter 1 : CSS

32 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/css/image-formats.png
https://almanac.httparchive.org/static/images/2022/css/image-formats.png

Number of images in CSS

The number of images loaded from CSS remains the same as in 2021. CSS doesn’t cause many

image loads: the lower two percentiles came in at one image each, and even the 90th percentile

hovered around 10 images, across all image types.

Weight of images in CSS

While CSS doesn’t cause many image loads, the weight of those images is important. The data

showed that image weight has increased from 2021, despite the fact that the number of images

has stayed the same.

Figure 1.34. Distribution of number of images loaded from CSS.

Part I Chapter 1 : CSS

2022 Web Almanac by HTTP Archive 33

https://almanac.httparchive.org/static/images/2022/css/css-initiated-images.png
https://almanac.httparchive.org/static/images/2022/css/css-initiated-images.png

The median page, on mobile, has increased image weight by 1KB to 17KB. At the upper end of

the chart however, at the 90th percentile we see an increase of 67KB on mobile and 42KB on

desktop. As in 2021, the weight is consistently lower on mobile, an indication that developers

are trying to serve smaller images to mobile contexts.

Figure 1.35. Distribution of total weight of images loaded from CSS.

Part I Chapter 1 : CSS

34 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/css/image-weights.png
https://almanac.httparchive.org/static/images/2022/css/image-weights.png

Pixel size of images in CSS

This is an interesting chart which shows that at the lower end of the chart people are serving

images of around the same size to desktop and mobile, at the 50th and 75th percentile pages

are serving far larger images to their mobile users than they do to desktop. What the data

shows is that people are serving much wider images to their mobile users, perhaps to try to

account for tablets in landscape mode.

Layout

We have many options to choose from when doing layout on the web, and most sites will be

using a variety of these methods. A simple search of the data, looking for property and value

combinations to detect layout methods in use, gives us the following table.

Figure 1.36. Distribution of sizes of images loaded from CSS.

Part I Chapter 1 : CSS

2022 Web Almanac by HTTP Archive 35

https://almanac.httparchive.org/static/images/2022/css/image-dimensions.png
https://almanac.httparchive.org/static/images/2022/css/image-dimensions.png

This chart doesn’t tell us the main layout method used on a page. It indicates that a property or

value appears in the CSS for those pages. For example, 51% of pages are using the old 2009

version of flexbox, with display: box . It’s likely this has been added for backwards

compatibility, perhaps via a tool such as Autoprefixer.

Figure 1.37. Layout methods by percent of pages.

Part I Chapter 1 : CSS

36 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/css/layout-props.png
https://almanac.httparchive.org/static/images/2022/css/layout-props.png

Flexbox and grid adoption

Flexbox and grid usage continue to grow. In 2021, flexbox adoption was 71%—it’s now at 74%.

Grid has jumped from 8% to 12%. Note that, in contrast to the previous section, what is

measured here is the percentage of pages that are actually using flexbox or grid for layout, as

opposed to the pages that simply have some sort of flexbox or grid property in their stylesheet.

Grid adoption is reasonably slow. We feel this may be due to the prevalence of frameworks

being used for layout, many of which have based their layouts on flexbox.

We also took a look at a couple of values of flex and grid properties that are newer to us,

to see how adoption of these new features was developing.

The value of content for the flex-basis property is an explicit instruction for the browser to

look at the intrinsic content size of the item, rather than any width set on it. It’s a newer value,

at the time of writing not available in the release version of Safari. Currently, only 0.5% of

mobile and 0.6% of desktop sites use this value.

The subgrid value for grid-template-rows and grid-template-columns is, at the

time the queries were run, only supported in Firefox. Perhaps unsurprisingly, it appears in only

211 mobile and 212 desktop pages in the entire dataset. As the value is part of the Interop

2022 project, we will be interested to see how support grows once this becomes interoperable.

Figure 1.38. Flexbox and grid adoption over the past four years.

Part I Chapter 1 : CSS

2022 Web Almanac by HTTP Archive 37

https://almanac.httparchive.org/static/images/2022/css/flexbox-grid.png
https://almanac.httparchive.org/static/images/2022/css/flexbox-grid.png

Box sizing

The web has overwhelmingly voted to reject the original W3C box model in favor of box-
sizing: border-box . The number of pages using this property and value combination has

risen slightly again to over 90% of pages.

Almost half of all pages analyzed apply border-box sizing to every element on the page via

the universal selector (*).

Around 22% of pages use border-box on checkboxes and radio buttons. We see a lot of

.wp- classes again, showing that WordPress is responsible for the use on 20% of pages

analyzed.

Figure 1.39. The percentage of pages that set box-sizing: border-box .

92%

Figure 1.40. The percentage of pages that declare box-sizing: border-box on the *
selector.

44%

Part I Chapter 1 : CSS

38 2022 Web Almanac by HTTP Archive

The median mobile page declares border-box 22 times. At the 90th percentile, it’s declared

an overwhelming 101 times. Note that previous years’ queries had a bug affecting this metric.

Correcting for that, the results in 2021 are comparable.

Multicolumn

Use of multi-column6 layout has increased once again, it’s now found on 23% of pages, a rise of 3

points since 2021.

Figure 1.41. Distribution of the number of border-box declarations per page.

Figure 1.42. The percentage of pages using multi-column layout.

23%

6. https://developer.mozilla.org/docs/Web/CSS/CSS_Columns

Part I Chapter 1 : CSS

2022 Web Almanac by HTTP Archive 39

https://almanac.httparchive.org/static/images/2022/css/box-sizing.png
https://almanac.httparchive.org/static/images/2022/css/box-sizing.png
https://developer.mozilla.org/docs/Web/CSS/CSS_Columns

The aspect-ratio property

The new aspect-ratio property is used on 2% of pages. This became interoperable towards

the end of 2021, so it will be interesting to see usage of this property grow over time.

Transitions and animations

The animation property appears on 77% of mobile pages (the same as last year) and a slight

increase on desktop to 76.8%. The transition property is even more popular, it’s found on

85% of mobile and 85.6% of desktop pages. The desktop frequency has dropped slightly by

around 4 percentage points since 2021.

Figure 1.43. The percentage of pages using the aspect-ratio property.

2%

Part I Chapter 1 : CSS

40 2022 Web Almanac by HTTP Archive

As seen last year, the most common usage is to apply transitions to all animatable properties

with the all keyword. This usage has grown to 53%—up 7 percentage points—followed by

opacity at 50% of pages.

Figure 1.44. The most popular transition properties by percent of pages.

Part I Chapter 1 : CSS

2022 Web Almanac by HTTP Archive 41

https://almanac.httparchive.org/static/images/2022/css/transition-props.png
https://almanac.httparchive.org/static/images/2022/css/transition-props.png

Looking at the duration of transitions, we see a change from last year. In 2021, at the 90th

percentile the median transition duration was half a second, this has now jumped to 1 second.

We see increases across all top four percentiles.

Figure 1.45. Distribution of transition durations.

Figure 1.46. Distribution of transition delays.

Part I Chapter 1 : CSS

42 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/css/transition-durations.png
https://almanac.httparchive.org/static/images/2022/css/transition-durations.png
https://almanac.httparchive.org/static/images/2022/css/transition-delays.png
https://almanac.httparchive.org/static/images/2022/css/transition-delays.png

The distribution of transition delays has also changed. The 90th percentile delay has dropped

from 1.7 seconds to half a second. Though the 10th percentile median delay is now over half a

negative second. This is seen when a transition starts partway through the resulting animation.

We also looked at the average number of keyframes used per animation, and found one site

that used an astonishing 6,995 keyframes. This was unusual however, and even at the 90th

percentile, the number of keyframes per animation is five on both desktop and mobile.

Figure 1.47. Distribution of keyframes per animation.

Part I Chapter 1 : CSS

2022 Web Almanac by HTTP Archive 43

https://almanac.httparchive.org/static/images/2022/css/transition-keyframe-distribution.png
https://almanac.httparchive.org/static/images/2022/css/transition-keyframe-distribution.png

As you might expect the most popular stops are at 0% to and from 100%, followed by 50%.

Developers generally set these stops at 10% intervals, only 1% of pages use 33%, for example.

Figure 1.48. The most popular transition keyframes by percent of occurrences.

Part I Chapter 1 : CSS

44 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/css/transition-keyframe-stops.png
https://almanac.httparchive.org/static/images/2022/css/transition-keyframe-stops.png

There has been little change in the distribution of timing functions used during transitions when

compared to 2021. As then, the clear leader is ease .

Figure 1.49. Distribution of timing functions.

Part I Chapter 1 : CSS

2022 Web Almanac by HTTP Archive 45

https://almanac.httparchive.org/static/images/2022/css/transition-timing-functions.png
https://almanac.httparchive.org/static/images/2022/css/transition-timing-functions.png

To understand what developers are using animations for, we took a look at the names used for

the animation classes. For example, anything with spin in the class name is deemed to be

rotate. Rotate animations were the most popular, as in 2021. However the percentage has

dropped from 18% to 13%, with bounce animations moving from 5th place to 3rd place in the

list.

As last year, the high showing for unknown/other is due to a prevalence of the class name a ,

which we can’t map to a specific animation type.

Visual Effects

We looked at some visual effects being used in CSS. For example, 18% of desktop pages define

Figure 1.50. Types of animations as identified by animation name.

Figure 1.51. The percentage of pages using blend modes.

18%

Part I Chapter 1 : CSS

46 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/css/transition-animation-names.png
https://almanac.httparchive.org/static/images/2022/css/transition-animation-names.png

styles on the background-blend-mode or mix-blend-mode properties.

The most frequently seen value for blend modes was multiply , seen on 42% of pages.

However there is a fair distribution of other values too.

Around 18% of pages were using a custom property var(--overlay-mix-blend-mode) , a

specific name that must come from a library or tool of some sort.

Figure 1.52. Most popular blend modes used on pages that set blend mode.

Part I Chapter 1 : CSS

2022 Web Almanac by HTTP Archive 47

https://almanac.httparchive.org/static/images/2022/css/blend-mode-values.png
https://almanac.httparchive.org/static/images/2022/css/blend-mode-values.png

Of the percentage of pages that have set filters to apply graphical effects, 82% are using the

alpha() value, which is non-standard and used for Internet Explorer 8 and below. We also

see a high usage of the Microsoft.gradient() filter.

Of the standard values7, 31% of pages use blur() , making it the most popular value after

none .

Figure 1.53. Most popular filter functions used on pages that set filters.

7. https://developer.mozilla.org/docs/Web/CSS/filter

Part I Chapter 1 : CSS

48 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/css/filter-functions.png
https://almanac.httparchive.org/static/images/2022/css/filter-functions.png
https://docs.microsoft.com/en-us/previous-versions/windows/internet-explorer/ie-developer/platform-apis/ms532997(v=vs.85)
https://docs.microsoft.com/en-us/previous-versions/windows/internet-explorer/ie-developer/platform-apis/ms532997(v=vs.85)
https://developer.mozilla.org/docs/Web/CSS/filter

In pages that use clip-path to clip an element, the vast majority are using inset() , the

value that simply insets the box of the element, 88% of pages using clip-path have used this

function.

After that, and the value none , most developers have chosen to use polygon() , which is the

value that gives the most flexibility to define your own path.

Responsive design

While many developers are eagerly anticipating container queries8, and new layout methods

such as flexbox and grid can often enable a design to work well on multiple screen sizes, media

queries9 are used in the majority of pages for responsive design.

When developers write media queries, they most often test the width of the viewport. max-
width and min-width were the most popular queries by far, the same as in 2020 and 2021.

There was no ranking change in the third and fourth place results either.

Figure 1.54. Popular clip-path values in pages that set clip-path() .

8. https://developer.mozilla.org/docs/Web/CSS/CSS_Container_Queries
9. https://developer.mozilla.org/docs/Web/CSS/Media_Queries/Using_media_queries

Part I Chapter 1 : CSS

2022 Web Almanac by HTTP Archive 49

https://almanac.httparchive.org/static/images/2022/css/clip-path-functions.png
https://almanac.httparchive.org/static/images/2022/css/clip-path-functions.png
https://developer.mozilla.org/docs/Web/CSS/CSS_Container_Queries
https://developer.mozilla.org/docs/Web/CSS/Media_Queries/Using_media_queries
https://developer.mozilla.org/docs/Web/CSS/Media_Queries/Using_media_queries

The prefers-reduced-motion media query, however, which was noted in 2021 as rising in

the rankings, has now edged out orientation to take the fourth spot. This is due to a 2% rise

for prefers-reduced-motion but also a drop of 4% for orientation .

Figure 1.55. Popular media query features.

Part I Chapter 1 : CSS

50 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/css/media-query-features.png
https://almanac.httparchive.org/static/images/2022/css/media-query-features.png

If we just look at the prefers-* user preference features, we can see that prefers-
reduced-motion is by far the most popular, due to good browser support plus the prevalence

of animations and transitions on the web. The prefers-color-scheme feature, checking to

see if the user has set a preference for a light or dark scheme, has increased in use slightly, as

the use of dark mode on websites and applications becomes more popular.

Figure 1.56. Use of user preference features by percent of pages.

Part I Chapter 1 : CSS

2022 Web Almanac by HTTP Archive 51

https://almanac.httparchive.org/static/images/2022/css/prefers-features.png
https://almanac.httparchive.org/static/images/2022/css/prefers-features.png

The hover and pointer media features help developers test the capabilities of the device,

and the way the user might be interacting with it. They are a better way to discover if a user is

using a touchscreen, for example, than screen size alone given the number of large tablets and

touchscreen laptops in use.

Both hover and pointer now appear in the top ten features. The less useful any-pointer
and any-hover see very little use. Using any-pointer allows you to determine if a user has

access to a fine pointer such as a mouse or trackpad, even if pointer indicates they are

currently using the touchscreen. Asking a user to switch is definitely not ideal, though a

combination of these features could give you a good understanding of the environment a user is

working in.

Figure 1.57. Use of hover and pointer media features.

Part I Chapter 1 : CSS

52 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/css/hover-features.png
https://almanac.httparchive.org/static/images/2022/css/hover-features.png

Common breakpoints

As in the past two years, common breakpoints have changed little. The chart follows the same

shape, and the most common breakpoint being a max-width of 767px and min-width of

768px. As noted in 2021, this corresponds with an iPad in portrait mode.

Once again, breakpoints are overwhelmingly set in pixel values, we haven’t converted other

values to pixels for the chart. The first em value is again 48em , found at position 78.

Properties changed in queries

We looked at the properties that appear within media query blocks, to see which properties

people were changing based on breakpoint.

Figure 1.58. Distribution of the most popular breakpoints.

Part I Chapter 1 : CSS

2022 Web Almanac by HTTP Archive 53

https://almanac.httparchive.org/static/images/2022/css/media-query-breakpoints.png
https://almanac.httparchive.org/static/images/2022/css/media-query-breakpoints.png

The display property is still top of the chart for properties changed within media queries,

however there has been some reshuffling in the rankings. These are not as dramatic as they

might seem. The color property has vanished from the chart, however this only represents a

change from 74% to 67%. It is joined however by a reduction in usage of background-color
for 65% to 63%, which makes us wonder if some framework, or perhaps WordPress has

stopped using this in a stylesheet.

Another interesting point to note is that in 2020 font-size appeared in 73% of media

Figure 1.59. Most popular properties found in media query blocks.

Part I Chapter 1 : CSS

54 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/css/media-query-props.png
https://almanac.httparchive.org/static/images/2022/css/media-query-props.png

blocks, and was fifth on the list. In 2021, it showed up in 60% of blocks, appearing at 12th. This

year it has gained ground, back to 76% and sixth place.

Feature Queries

Features queries, used for testing for support of a CSS feature, were found on 40% of mobile

pages and 38% of desktop pages. This was down from a figure of 48% in 2021. This may indicate

that support for common features tested has become great enough for people not to worry

about testing for the feature before use.

The number of feature query blocks per page is 4 at the 75th percentile, and at the 90th

percentile 7 for desktop and 8 for mobile. We did find one site however with 1,722 feature

query blocks.

As with last year, the most popular feature tested for in feature queries was position:
sticky , however this has fallen from 53% to 36% of occurrences, perhaps due to the improved

browser support for this feature.

Non-standard features show up strongly in these tests, with touch-callout (-webkit-
touch-callout) and ime-align (-ms-ime-align). The former has grown in usage from

5% to 11%, while ime-align has dropped from 7% to 5%.

Figure 1.60. Most popular features tested for with feature queries.

Part I Chapter 1 : CSS

2022 Web Almanac by HTTP Archive 55

https://almanac.httparchive.org/static/images/2022/css/supports-features.png
https://almanac.httparchive.org/static/images/2022/css/supports-features.png

Having tested for support, which properties are then used inside these feature query blocks?

The object-fit property came out top, the mask-* properties making a good showing,

along with their -webkit-mask-* counterparts. This is likely due to the lack of

interoperability for masking until recently, with the properties still requiring a -webkit prefix

for Chrome.

Figure 1.61. Properties used inside feature query blocks by percent of pages.

Part I Chapter 1 : CSS

56 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/css/supports-props.png
https://almanac.httparchive.org/static/images/2022/css/supports-props.png

While the display property features in the top 20, you have to go a long way down the list to

find any grid properties. The grid-template-columns property being found in 2% of

feature query blocks.

Internationalization

English is described as a horizontal top to bottom language, because sentences are written

horizontally, starting at the top of the page. The script direction runs left-to-right (LTR). Arabic,

Hebrew, and Urdu are also horizontal top to bottom languages, but have a script direction of

right-to-left (RTL). There are also languages that are written vertically, from top to bottom, such

as Chinese, Japanese, and Mongolian. CSS has evolved to better cope with these different

writing modes and script directions.

Direction

The number of pages using the direction property to set CSS either on the <body> or

<html> element remained unchanged from 2021, with 11% of pages setting it on <html>
and 3% on <body> . It’s recommended to use HTML10, rather than CSS to set direction , so a

lower number here matches that best practice.

Logical and physical properties

Logical or flow-relative properties such as border-block-start and values such as start
for text-align are useful for internationalization, as they follow the flow of text rather than

being tied to the physical dimensions of the screen. Browser support for these properties is

now excellent, so we wondered whether we would see more adoption.

10. https://www.w3.org/International/questions/qa-html-dir

Part I Chapter 1 : CSS

2022 Web Almanac by HTTP Archive 57

https://www.w3.org/International/questions/qa-html-dir

Logical property usage has increased slightly from 2021, up from 4% to 5%. However, the chart

for 2022 looks very different to the one for 2021. Overwhelmingly, people are using logical

properties to set margin properties, up to 70% from 26%. The most popular margin
properties are margin-inline-start and margin-inline-end , found on 9% of total

pages. These are particularly useful for making sure that spacing between a label and following

field, for example, works in the same way in a LTR and RTL script.

Ruby

Once again we checked for usage of CSS Ruby11, a collection of properties used for interlinear

annotation, which are short runs of text alongside the base text.

Its usage is still tiny, but has increased from 2021. In only 8,157 desktop pages and 9,119

mobile pages were found to be using it—less than 0.1% of all pages analyzed. This year, 16,698

desktop and 21,266 mobile pages—or 0.2% of all pages analyzed—were using it.

Figure 1.62. The distribution of logical properties used.

Figure 1.63. The percentage of mobile pages using CSS Ruby.

0.2%

11. https://developer.mozilla.org/docs/Web/CSS/CSS_Ruby

Part I Chapter 1 : CSS

58 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/css/logical-props.png
https://almanac.httparchive.org/static/images/2022/css/logical-props.png
https://developer.mozilla.org/docs/Web/CSS/CSS_Ruby

CSS in JS

The use of CSS-in-JS has not increased from last year, staying at 3%. This usage is almost all

from libraries, the most popular of which is Styled Components. This library has dropped in

share from 57% to 49%, with a new library entering the mix at almost 11%. Goober12 describes

itself as “a less than 1KB css-in-js solution”, and is certainly making some inroads among people

who like this type of thing.

Houdini

There is still very little usage of Houdini13 on the open web. Looking at the number of pages

using animated custom properties shows only a small increase since 2021. We also looked at

usage of the Houdini Paint API. We do find instances of this in use on the web. By looking at the

names of worklets used, much of this is the smooth corners14 worklet, indicating that people are

using it as a progressive enhancement, given that this can fall back nicely to a regular border-
radius .

Figure 1.64. Usage of CSS in JS libraries.

12. https://goober.js.org/
13. https://developer.mozilla.org/docs/Web/CSS/CSS_Houdini
14. https://css-houdini.rocks/smooth-corners/

Part I Chapter 1 : CSS

2022 Web Almanac by HTTP Archive 59

https://almanac.httparchive.org/static/images/2022/css/css-in-js.png
https://almanac.httparchive.org/static/images/2022/css/css-in-js.png
https://goober.js.org/
https://developer.mozilla.org/docs/Web/CSS/CSS_Houdini
https://css-houdini.rocks/smooth-corners/

Sass

Preprocessors like Sass can be seen as a good indicator of what developers want to be able to

do with CSS, but can’t. And, with CSS increasing in power, a common question from developers

is whether we need to use Sass at all. We can see from the rise in custom properties usage, that

one common preprocessor use—the ability to have variables or constants—now has a built-in

CSS equivalent.

Looking at the function calls shows that color functions are still a very popular use of Sass,

something that may well soon be replaced with new CSS color functions15 such as color-
mix() . There are some changes from last year. The darken function has dropped 2

percentage points to 14% and third place. The lighten function has, however, gained a

points.

Figure 1.65. Most popular Sass function calls by percent of calls.

15. https://www.w3.org/TR/css-color-5/

Part I Chapter 1 : CSS

60 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/css/sass-function-calls.png
https://almanac.httparchive.org/static/images/2022/css/sass-function-calls.png
https://www.w3.org/TR/css-color-5/

Looking at control flow statements we see a small increase in @for and @each , however

@while has increased from 2% to 7%.

Figure 1.66. Distribution of control flow statements on SCSS.

Part I Chapter 1 : CSS

2022 Web Almanac by HTTP Archive 61

https://almanac.httparchive.org/static/images/2022/css/sass-control-flow-statements.png
https://almanac.httparchive.org/static/images/2022/css/sass-control-flow-statements.png

Nesting is also interesting, given that a future spec for CSS Nesting is currently in development

and discussion at the CSS Working Group. Nesting in SCSS sheets is very common, and can be

identified by looking for the & character. As with last year pseudo-classes such as :hover ,

and classes such as .active make up most cases of nesting. All usage increased slightly,

however & descendent increased 7 percentage points from 18% to 25%. Implicit nesting is

not measured in this survey, as it does not use special characters.

CSS for print

We wondered whether developers were creating print stylesheets to provide a better printed

experience, and only 5% of desktop and 4% of mobile sites were doing so.

Figure 1.67. Use of explicit nesting in SCSS by percent of pages using SCSS.

Figure 1.68. The percentage of desktop pages with print-specific styles.

5%

Part I Chapter 1 : CSS

62 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/css/sass-nesting.png
https://almanac.httparchive.org/static/images/2022/css/sass-nesting.png

Of the pages using print styles, over half changed the value of display —perhaps to simplify a

grid or flex layout for print. We also see people changing colors, tweaking margin and padding,

and setting the font-size . At 34% is the content property, used to insert generated

content.

Print is a fragmented medium; the content is fragmented into pages, and we have a set of

fragmentation properties that aim to give some control over how these breaks happen. For

example, developers usually want to avoid a heading being the last thing on a page, or a caption

being disconnected from the figure it relates to.

Figure 1.69. The top properties found in print styles on pages that have a print stylesheet.

Part I Chapter 1 : CSS

2022 Web Almanac by HTTP Archive 63

https://almanac.httparchive.org/static/images/2022/css/print-props.png
https://almanac.httparchive.org/static/images/2022/css/print-props.png

We see in this chart that many developers are using the old fragmentation properties of page-
break-inside , page-break-after , and page-break-before , rather than the new

properties such as break-before , which has very low usage.

The orphans property appears in 22% of print stylesheets, despite lacking support in Firefox.

This property defines the number of lines that should be left at the bottom of a page before a

fragmentation break. The widows property (which sets the number of lines on their own after

a fragmentation break) is seen with around the same frequency. It is likely that people are

setting the same value for both.

Paged media

There is an entire specification for dealing with Paged Media, and CSS for print. However, this

has been poorly implemented in browsers. To find a good implementation of these features you

need to use a print-specific user agent.

There is some browser support for the @page rule and its pseudo-classes, and we did find

developers using these to set different page properties for the first page, and the left and right

pages of a spread.

Figure 1.70. Fragmentation properties used in print stylesheets.

Part I Chapter 1 : CSS

64 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/css/print-fragmentation-props.png
https://almanac.httparchive.org/static/images/2022/css/print-fragmentation-props.png
https://developer.mozilla.org/docs/Web/CSS/@page
https://developer.mozilla.org/docs/Web/CSS/@page

Of people using these pseudo-classes, usage was mostly to set the page margins, and also the

size of the page.

Meta

This section rounds up some general information about CSS usage, for example how often

declarations are repeated, and common mistakes in CSS.

Declaration repetition

In 2020 and 2021, analysis was done to determine the amount of “declaration repetition”. This

aims to identify how efficient a stylesheet is by looking for the number of declarations using the

same property and value.

Figure 1.71. Number of pages found using @page spread pseudo-classes.

Pseudo-class Desktop Mobile

:first 5,950 7,352

:right 1,548 2,115

:left 1,554 2,101

Part I Chapter 1 : CSS

2022 Web Almanac by HTTP Archive 65

In 2021 it was reported there was a slight drop in repetition, this year there is a slight rise. This

metric does therefore seem fairly stable year-on-year.

Shorthands and longhands

In CSS, a shorthand property is one that can set a number of longhand properties in one

declaration. For example, the shorthand property background can be used to set all of the

following longhand properties:

• background-attachment

• background-clip

• background-color

• background-image

• background-origin

• background-position

• background-repeat

• background-size

Figure 1.72. Distribution of repetition.

Part I Chapter 1 : CSS

66 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/css/repetition.png
https://almanac.httparchive.org/static/images/2022/css/repetition.png

When developers mix shorthand properties like background and longhand properties like

background-size in a stylesheet, it is always best to have the longhands come after the

shorthands. We looked at instances of this to see which longhands were most common.

As in 2020 and 2021, background-size came out top of the chart, and there was little

difference to be seen from 2021.

Unrecoverable syntax errors

As in previous years, we use the Rework16 engine for CSS parsing. An unrecoverable error is one

where the error is so bad, the full stylesheet is unable to be parsed by Rework. Last year, 0.94%

of desktop pages, and 0.55% of mobile pages contained an unrecoverable error. This year, 13%

of desktop and 12% of mobile pages had such an error. This seems like a large jump, however

due to some changes in methodology (adding size thresholds) it is likely that not all of the

instances are unrecoverable errors.

Figure 1.73. The most popular longhand properties that come after shorthands.

16. https://github.com/reworkcss/css

Part I Chapter 1 : CSS

2022 Web Almanac by HTTP Archive 67

https://almanac.httparchive.org/static/images/2022/css/shorthand-first-props.png
https://almanac.httparchive.org/static/images/2022/css/shorthand-first-props.png
https://github.com/reworkcss/css

Nonexistent properties

As in previous years we checked for declarations that had valid syntax, but referred to

properties that don’t actually exist. This includes spelling errors, malformed vendor prefixes,

and things developers have just made up.

The top mystery property is -archetype , which is now appearing in 11% of cases of

stylesheets with nonexistent properties. This property has jumped from 4% last year to 11% to

take the top spot. The second property is font-smoothing with a drop of 4% points from last

year. This appears to be an unprefixed version of -webkit-font-smoothing that does not

actually exist. The use of the malformed webkit-transition (which should be -webkit-
transition) has dropped from 14% to 3%. This makes us think it was perhaps getting into a

large number of stylesheets via a framework or other third party that has since been updated to

fix the problem.

Figure 1.74. The most frequently seen unknown properties.

Part I Chapter 1 : CSS

68 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/css/unknown-props.png
https://almanac.httparchive.org/static/images/2022/css/unknown-props.png

Conclusion

CSS continues to evolve at a rapid pace, however we can see from the data that new features

are adopted quite slowly, even when they have been in all major engines for several years.

There are a few highly requested features, such as container queries, landing in browsers as of

this writing. It will be interesting to see whether the uptake for these features will match the

demand for them.

Something that has been apparent in this data is how much popular platforms, in particular

WordPress, can impact usage statistics. We can see WordPress class and custom property

names clearly in the data, but what is harder to see are the properties and values used by

classes added to the majority of WordPress sites. If WordPress adopts a new feature, as part of

one of these standard classes, we should expect to see a sudden uptick in usage.

As noted in last year’s conclusion, the data tells a story of gradual, steady adoption of new

features (such as grid layout) or best practices (such as using logical rather than physical

properties). We look forward to seeing how these changes develop in the years to come.

Author

Rachel Andrew

@rachelandrew rachelandrew https://rachelandrew.co.uk

Rachel Andrew works for Google as a technical writer, working on web.dev17 and

the Chrome Developers site18. She is a front and back-end web developer, author

and speaker, author or co-author of 22 books including The New CSS Layout19 and

a regular contributor to a number of publications both on and offline. Rachel is a

Member of the CSS Working Group, and can be found posting photos of her cats

on Twitter as @rachelandrew.

17. https://web.dev
18. https://developer.chrome.com/
19. https://abookapart.com/products/the-new-css-layout

Part I Chapter 1 : CSS

2022 Web Almanac by HTTP Archive 69

https://twitter.com/rachelandrew
https://github.com/rachelandrew
https://rachelandrew.co.uk/
https://web.dev/
https://developer.chrome.com/
https://abookapart.com/products/the-new-css-layout
https://twitter.com/rachelandrew

70 2022 Web Almanac by HTTP Archive

Part I Chapter 2

JavaScript

Written by Jeremy Wagner
Reviewed by Minko Gechev, Pankaj Parkar, Nishu Goel, Houssein Djirdeh, Kevin Farrugia, and Barry
Pollard
Analyzed by Nishu Goel and Kevin Farrugia
Edited by Abel Mathew and Rick Viscomi

Introduction

JavaScript is a powerful force that provides the lion’s share of interactivity on the web. It drives

behaviors from the simple to the complex, and is making more things possible on the web than

ever before.

Yet, the increased usage of JavaScript to deliver rich user experiences comes at a cost. From the

moment JavaScript is downloaded, parsed, and compiled, to every line of code it executes, the

browser must orchestrate all kinds of work to make everything possible. Doing too little with

JavaScript means you might fall short of fulfilling user experience and business goals. On the

other hand, shipping too much on JavaScript means you will be creating user experiences that

are slow to load, sluggish to respond, and frustrating to users.

This year, we’ll once again be looking at the role of JavaScript on the web, as we present our

findings for 2022 and offering advice for creating delightful user experiences.

Part I Chapter 2 : JavaScript

2022 Web Almanac by HTTP Archive 71

How much JavaScript do we load?

To begin, we’ll assess the amount of JavaScript web developers ship on the web. After all, before

improvements can be made, an assessment of the current landscape must be performed.

As was the case last year, this year marks yet another increase in the amount of JavaScript

shipped to browsers. From 202120 to 2022, an increase of 8% for mobile devices was observed,

whereas desktop devices saw an increase of 10%. While this increase is less steep than in

previous years, it’s nonetheless the continuation of a concerning trend. While device

capabilities continue to improve, not every one is running the latest device. The fact remains

that more JavaScript equates to more strain on a device’s resources.

Figure 2.1. Distribution of the amount of JavaScript loaded per page.

20. https://almanac.httparchive.org/en/2021/javascript#how-much-javascript-do-we-load

Part I Chapter 2 : JavaScript

72 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/javascript/bytes-per-page.png
https://almanac.httparchive.org/static/images/2022/javascript/bytes-per-page.png
https://almanac.httparchive.org/en/2021/javascript#how-much-javascript-do-we-load

According to Lighthouse21, the median mobile page loads 162 KB of unused JavaScript. At the

90th percentile, 604 KB of JavaScript are unused. This is a slight uptick from last year, where

the median and 90th percentile of unused JavaScript was 155 KB and 598 KB, respectively. All

of this represents a very large amount of unused JavaScript, especially when you consider that

this analysis tracks the transfer size of JavaScript resources which, if compressed, means that

the decompressed portion of used JavaScript may be a lot larger than the chart suggests.

When contrasted with the total number of bytes loaded for mobile pages at the median, unused

JavaScript accounts for 35% of all loaded scripts. This is down slightly from last year’s figure of

36%, but is still a significantly large chunk of bytes loaded that go unused. This suggests that

many pages are loading scripts that may not be used on the current page, or are triggered by

interactions later on in the page lifecycle, and may benefit from dynamic import() to reduce

startup costs.

JavaScript requests per page

Every resource on a page will kick off at least one request, and possibly more if a resource

makes additional requests for more resources.

Where script requests are concerned, the more there are, the more likely you’ll not just load

Figure 2.2. Distribution of the amount of unused JavaScript bytes.

21. https://web.dev/unused-javascript/

Part I Chapter 2 : JavaScript

2022 Web Almanac by HTTP Archive 73

https://almanac.httparchive.org/static/images/2022/javascript/unused-js.png
https://almanac.httparchive.org/static/images/2022/javascript/unused-js.png
https://web.dev/unused-javascript/

more JavaScript, but also increase contention between script resources that may bog down the

main thread, leading to slower startup.

In 2022, the median mobile page responded to 21 JavaScript requests, whereas at the 90th

percentile, there were 60. Compared to last year, this is an increase of 1 request at the median

and 4 requests at the 90th percentile.

Where desktop devices in 2022 are concerned, there are 22 JavaScript requests at the median,

and 63 at the 90th percentile. Compared to last year, this is an increase of 1 JavaScript request

at the median, and 4 at the 90th percentile—the same increase as noted for mobile devices.

While not a large increase in the number of requests, it does continue the trend of increased

requests year over year since the Web Almanac’s inception in 2019.

How is JavaScript processed?

Since the advent of JavaScript runtimes such as Node.js, it has become increasingly common to

rely on build tools in order to bundle and transform JavaScript. These tools, while undeniably

useful, can have effects on how much JavaScript is shipped. New to the Web Almanac this year,

we’re presenting data on the usage of bundlers and transpilers.

Figure 2.3. Distribution of the number of JavaScript requests per page.

Part I Chapter 2 : JavaScript

74 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/javascript/requests-per-page.png
https://almanac.httparchive.org/static/images/2022/javascript/requests-per-page.png

Bundlers

JavaScript bundlers are build-time tools that process a project’s JavaScript source code and

then apply transformations and optimizations to it. The output is production-ready JavaScript.

Take the following code as an example:

function sum (a, b) {

 return a + b;

}

A bundler will transform this code to a smaller, but more optimized equivalent that takes less

time for the browser to download:

function n(n,r){return n+r}

Given the optimizations bundlers perform, they are a crucial part of optimizing source code for

better performance in production environments.

There are a wealth of choices when it comes to JavaScript bundlers, but one that pops into mind

often is webpack22. Fortunately, webpack’s generated JavaScript contains a number of

signatures (webpackJsonp , for example) that make it possible to detect if a website’s

production JavaScript has been bundled using webpack.

22. https://webpack.js.org/

Part I Chapter 2 : JavaScript

2022 Web Almanac by HTTP Archive 75

https://webpack.js.org/

Of the 1,000 most popular websites, 17% use webpack as a bundler. This makes sense, as many

of the top pages HTTP Archive crawls are likely to be high-profile ecommerce sites that use

webpack to bundle and optimize source code. Even so, the fact that 5% of the all pages in the

HTTP Archive dataset use webpack is a significant statistic. However, webpack isn’t the only

bundler in use.

Figure 2.4. Pages that use webpack-bundled JavaScript by rank.

Part I Chapter 2 : JavaScript

76 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/javascript/webpack-rank.png
https://almanac.httparchive.org/static/images/2022/javascript/webpack-rank.png

Parcel23 is a noteworthy alternative to webpack, and its adoption is significant. Parcel’s adoption

is consistent across all ranks, accounting for a range of 1.2% to 1.9% across rankings.

While HTTP Archive is unable to track the usage of all bundlers in the ecosystem, bundler usage

is significant in the overall picture of JavaScript in that they’re not only important to the

developer experience, but the overhead they can contribute in the form of dependency

management code can be a factor in how much JavaScript is shipped. It’s worth checking how

your overall project settings are configured to produce the most efficient possible output for

the browsers your users use.

Transpilers

Transpilers are often used in toolchains at build-time to transform newer JavaScript features

into a syntax that can be run in older browsers. Because JavaScript has evolved rapidly over the

years, these tools are still in use. New to this year’s Web Almanac is an analysis of the usage of

Babel24 in delivering widely compatible, production-ready JavaScript. The singular focus on

Babel specifically is due to its wide usage in the developer community over alternatives.

Figure 2.5. Pages that use Parcel-bundled JavaScript by rank.

23. https://parceljs.org/
24. https://babeljs.io/

Part I Chapter 2 : JavaScript

2022 Web Almanac by HTTP Archive 77

https://almanac.httparchive.org/static/images/2022/javascript/parcel-rank.png
https://almanac.httparchive.org/static/images/2022/javascript/parcel-rank.png
https://parceljs.org/
https://babeljs.io/

These results are not a surprising development when you consider how much JavaScript has

evolved over the years. In order to maintain broad compatibility for a certain set of browsers,

Babel uses transforms25 to output compatible JavaScript code.

Transforms are often larger than their untransformed counterparts. When transforms are

extensive or duplicated across a codebase, potentially unnecessary or even unused JavaScript

may be shipped to users. This can adversely affect performance.

Considering that even 26% of pages ranked in the top million are transforming their JavaScript

source code using Babel, it’s not unreasonable to assume that some of these experiences may

be shipping transforms they don’t need. If you use Babel in your projects, carefully review

Babel’s available configuration options26 and plugins to find opportunities to optimize its output.

Since Babel also relies on Browserslist27 to figure out whether it needs to transform certain

features to a legacy syntax, be sure to also review your Browerslist configuration to ensure that

your code is transformed to work in the browsers your users actually use.

How is JavaScript requested?

The manner in which JavaScript is requested may also have performance implications. There

Figure 2.6. Pages that use Babel by rank.

25. https://babeljs.io/docs/en/babel-plugin-transform-runtime#why
26. https://babeljs.io/docs/en/options
27. https://github.com/browserslist/browserslist

Part I Chapter 2 : JavaScript

78 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/javascript/babel-rank.png
https://almanac.httparchive.org/static/images/2022/javascript/babel-rank.png
https://babeljs.io/docs/en/babel-plugin-transform-runtime#why
https://babeljs.io/docs/en/options
https://github.com/browserslist/browserslist

are optimal ways you can request JavaScript, and in some cases, there are far less optimal

methods. Here, we’ll see how the web is shipping JavaScript overall, and how that aligns with

performance expectations.

async , defer , module , and nomodule

The async and defer attributes on the HTML <script> element control the behavior of

how scripts load. The async attribute will prevent scripts from blocking parsing, but will

execute as soon as they are downloaded, so may still block rendering. The defer attribute will

delay execution of scripts until the DOM is ready so should prevent those scripts from blocking

both parsing and rendering.

The type="module" and nomodule attributes are specific to the presence (or absence) of

ES6 modules being shipped to the browser. When type="module" is used, the browser

expects that the content of those scripts will contain ES6 modules, and will defer the execution

of those scripts until the DOM is constructed by default. The opposite nomodule attribute

indicates to the browser that the current script does not use ES6 modules.

It’s encouraging that 76% of mobile pages load scripts with async , as that suggests developers

are cognizant of the effects of render blocking. However, such a low usage of defer suggests

that there are opportunities being left on the table to improve rendering performance.

As noted last year28, using both async and defer is an antipattern that should be avoided as

the defer part is ignored and async takes precedence.

The general absence of type="module" and nomodule is not surprising, as few pages seem

Figure 2.7. Percentage of pages using async , defer , async and defer , type="module" ,

and nomodule attributes on <script> elements.

Feature Desktop Mobile

async 76% 76%

defer 42% 42%

async and defer 28% 29%

module 4% 4%

nomodule 0% 0%

28. https://almanac.httparchive.org/en/2021/javascript#async-and-defer

Part I Chapter 2 : JavaScript

2022 Web Almanac by HTTP Archive 79

https://almanac.httparchive.org/en/2021/javascript#async-and-defer

to be shipping JavaScript modules. As time goes on, the usage of type="module" in particular

may increase, as developers ship untransformed JavaScript modules to the browser.

Looking at the percentage of overall scripts across all the sites, presents a slightly different

view:

Here we see a much smaller use of both async and defer . Some of these scripts may be

being inserted dynamically after the initial rendering, but it’s also likely a good proportion of

pages are not setting these attributes on a lot of their scripts that are included in the initial

HTML and so are delaying rendering.

preload , prefetch , and modulepreload

Resource hints such as preload , prefetch , and modulepreload are useful in hinting to

the browser which resources should be fetched early. Each hint has a different purpose, with

preload used to fetch resources needed for the current navigation, modulepreload the

equivalent for preloading scripts that contain JavaScript modules29, and prefetch used for

resources needed in the next navigation.

Figure 2.8. Percentage of scripts using async , defer , async and defer , type="module" ,

and nomodule attributes on <script> elements.

Feature Desktop Mobile

async 49.3% 47.2%

defer 8.8% 9.1%

async and defer 3.0% 3.1%

module 0.4% 0.4%

nomodule 0% 0%

29. https://developer.mozilla.org/docs/Web/JavaScript/Guide/Modules

Part I Chapter 2 : JavaScript

80 2022 Web Almanac by HTTP Archive

https://developer.mozilla.org/docs/Web/JavaScript/Guide/Modules

Analyzing the trend of resource hint adoption is tricky. Not all pages benefit from them, and it’s

unwise to make a blanket recommendation to use resource hints broadly, as their overuse has

their own consequences—especially where preload is concerned. However, the relative

abundance of preload hints on 15% of mobile pages suggests that many developers are

aware of this performance optimization, and are trying to use it to their advantage.

prefetch is tricky to use, though it can be beneficial for long, multi-page sessions. Even so,

prefetch is entirely speculative, so much so that browsers may ignore it in certain conditions.

This means some pages may waste data by requesting resources which go unused. It really “just

depends”.

The lack of use of modulepreload makes sense, since adoption of the type="module"
attribute on <script> elements is similarly low. Even so, apps that ship JavaScript modules

without transformations could benefit from this resource hint, as it will not fetch just the

named resource, but the entire module tree. This could help in certain situations.

Let’s dig into an analysis of how many of each resource hint type is used.

Figure 2.9. Percentage of pages using various resource hints.

Resource hint Desktop Mobile

preload 16.4% 15.4%

prefetch 1.0% 0.8%

modulepreload 0.1% 0.1%

Part I Chapter 2 : JavaScript

2022 Web Almanac by HTTP Archive 81

https://blog.webpagetest.org/posts/removing-unused-preloads-on-festival-foods/
https://blog.webpagetest.org/posts/removing-unused-preloads-on-festival-foods/

Adoption of prefetch here is somewhat surprising, with three prefetch hints for

JavaScript resources per page. However, the number of these hints at the 75th and 90th

percentiles suggests that there may be a fair amount of waste in the form of unused resources

for page navigations that never occur.

Figure 2.10. Distribution of prefetch adoption for JavaScript resources per page.

Figure 2.11. Distribution of preload adoption for JavaScript resources per page.

Part I Chapter 2 : JavaScript

82 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/javascript/prefetch.png
https://almanac.httparchive.org/static/images/2022/javascript/prefetch.png
https://almanac.httparchive.org/static/images/2022/javascript/preload.png
https://almanac.httparchive.org/static/images/2022/javascript/preload.png

Remember—this analysis tracks how many resource hints are used for JavaScript resources on

pages that use one or more preload hints. The median page is delivering two preload hints

for JavaScript, which isn’t bad on its face, but it often depends on the size of the script, how

much processing scripts can kick off, or whether the script fetched via preload is even

needed for the initial page load.

Unfortunately, we see five preload hints for JavaScript resources at the 90th percentile,

which may be too much. This suggests that pages at the 90th percentile are especially reliant on

JavaScript, and are using preload to try and overcome the performance issues that result.

With modulepreload , we see a staggering 6 hints at the 75th percentile, and 14 at the 90th

percentile! This suggests that, while pages using one or more modulepreload hints at upper

percentiles are shipping untransformed ES6 modules directly to the browser, the need for so

many resource hints suggests an overreliance on JavaScript at the upper range.

Resource hints are great tools for optimizing how we load resources in the browser, but if

there’s one piece of advice you can heed when using them, it’s to use them sparingly, and for

resources that may not be initially discoverable; for example, a JavaScript file initially loaded in

the DOM that requests another one. Rather than preloading loads of scripts, try to whittle

down the amount of JavaScript you’re shipping, as that will lead to a better user experience

rather than preloading gobs of it.

Figure 2.12. Distribution of modulepreload adoption for JavaScript resources per page.

Part I Chapter 2 : JavaScript

2022 Web Almanac by HTTP Archive 83

https://almanac.httparchive.org/static/images/2022/javascript/modulepreload.png
https://almanac.httparchive.org/static/images/2022/javascript/modulepreload.png

JavaScript in the <head>

An old and often-touted best practice for performance has been to load your JavaScript in the

footer of the document to avoid render blocking of scripts and to ensure the DOM is

constructed before your scripts have a chance to run. In recent times, however, it has been

more commonplace in certain architectures to place <script> elements in the document

<head> .

This can be a good way to prioritize the loading of JavaScript in web applications, but async
and defer attributes should be used where possible to avoid render blocking of the DOM.

Render blocking is when the browser must halt all rendering of the page in order to process a

resource that the page depends on. This is done to avoid unpleasant effects such as the flash of

unstyled content30, or JavaScript runtime errors that can occur when the DOM isn’t ready for a

script that depends on DOM readiness.

We found that 77% of mobile pages have at least one render-blocking script in the document

<head> , whereas 79% of desktop pages do this. This is a concerning trend, because when

scripts block rendering, page content is not painted as quickly as it could be.

Figure 2.13. The percentage of mobile pages that have render-blocking scripts in the document
<head> .

77%

30. https://en.wikipedia.org/wiki/Flash_of_unstyled_content

Part I Chapter 2 : JavaScript

84 2022 Web Almanac by HTTP Archive

https://en.wikipedia.org/wiki/Flash_of_unstyled_content
https://en.wikipedia.org/wiki/Flash_of_unstyled_content

When looking at the problem by ranked pages, we see a similarly troubling pattern. In

particular, 63% of the top 1,000 websites accessed on mobile devices ship at least one render

blocking script in the <head> , and the proportion of pages increases as we proceed through

the ranks.

There are solutions to this: using defer is a relatively safe bet that will unblock the DOM from

rendering. Using async (when possible) is a good option, and will allow scripts to run

immediately, but those scripts must not have any dependencies on other <script> elements,

otherwise errors could occur.

Where possible, render-critical JavaScript can be placed in the footer and preloaded so the

browser can get a head start on requesting those resources. Either way, the state of render-

blocking JavaScript in tandem with how much JavaScript we ship is not good, and web

developers should make more of an effort to curb these issues.

Injected scripts

Script injection is a pattern where an HTMLScriptElement is created in JavaScript using

document.createElement and injected into the DOM with a DOM insertion method.

Alternatively, <script> element markup in a string can be injected into the DOM via the

innerHTML method.

Script injection is a fairly common practice used in a number of scenarios, but the problem with

Figure 2.14. Pages by rank that have render-blocking scripts in the document <head> .

Part I Chapter 2 : JavaScript

2022 Web Almanac by HTTP Archive 85

https://almanac.httparchive.org/static/images/2022/javascript/render-blocking-scripts-rank.png
https://almanac.httparchive.org/static/images/2022/javascript/render-blocking-scripts-rank.png
https://developer.mozilla.org/docs/Web/API/HTMLScriptElement
https://developer.mozilla.org/docs/Web/API/HTMLScriptElement
https://developer.mozilla.org/docs/Web/API/Document/createElement
https://developer.mozilla.org/docs/Web/API/Document/createElement
https://developer.mozilla.org/docs/Web/API/Element/innerHTML
https://developer.mozilla.org/docs/Web/API/Element/innerHTML

it is that it defeats the browser’s preload scanner31 by making the script undiscoverable as the

initial HTML payload is parsed. This can affect metrics such as Largest Contentful Paint (LCP)32 if

the injected script resource is ultimately responsible for rendering markup, which itself can kick

off long tasks to parse large chunks of markup on the fly.

At the median, we see that 25% of a page’s scripts are injected, as opposed to leaving them

discoverable in the initial HTML response. More concerning is that the 75th and 90th

percentiles of pages inject 50% and 70% of scripts respectively.

Script injection has the potential to harm performance33 when used to render page content the

user consumes, and should be avoided in these cases whenever necessary. That script injection

is so prevalent in today’s web is a concerning trend. Modern frameworks and tooling may rely

on this pattern, which means that some out-of-the-box experiences may rely on this potential

anti-pattern to provide functionality for websites.

First-party versus third-party JavaScript

There are two categories of JavaScript that websites often ship:

• First-party scripts that power the essential functions of your website and provide

Figure 2.15. Distribution of percentage of injected scripts across various percentiles.

31. https://web.dev/preload-scanner/#injected-async-scripts
32. https://web.dev/lcp/
33. https://www.igvita.com/2014/05/20/script-injected-async-scripts-considered-harmful/

Part I Chapter 2 : JavaScript

86 2022 Web Almanac by HTTP Archive

https://web.dev/preload-scanner/#injected-async-scripts
https://web.dev/lcp/
https://almanac.httparchive.org/static/images/2022/javascript/injected-scripts.png
https://almanac.httparchive.org/static/images/2022/javascript/injected-scripts.png
https://www.igvita.com/2014/05/20/script-injected-async-scripts-considered-harmful/

interactivity.

• Third-party scripts provided by external vendors that satisfy a variety of

requirements, such as UX research, analytics, providing advertising revenue, and

embeds for things such as videos and social media functions.

While first-party JavaScript may be easier to optimize, third-party JavaScript can itself be a

significant source of performance problems, as third-party vendors may not prioritize the

optimization of their JavaScript resources over adding new features to serve additional

business functions for their clients. Additionally, UX researchers, marketers, and other non-

technical personnel may be hesitant to give up functionality or sources of revenue that these

scripts provide.

In this section, we’ll analyze the breakdown of first-party and third-party code, and comment on

the current state of how websites today are divvying up how they load JavaScript—and where

from.

Requests

Here, we see a sobering picture. Regardless of the percentile, it seems that all observed hosts

are serving an equivalent amount of first and third-party scripts. The median host serves 10 of

each type, the 75th percentile serves 20 of each type, and the 90th percentile host serves 34

Figure 2.16. Distribution of first- versus third-party JavaScript requests by host.

Part I Chapter 2 : JavaScript

2022 Web Almanac by HTTP Archive 87

https://almanac.httparchive.org/static/images/2022/javascript/requests-party.png
https://almanac.httparchive.org/static/images/2022/javascript/requests-party.png

third-party scripts!

This is a problematic and worrying trend. Third-party scripts are responsible for all sorts of

damage when it comes to performance. Third-party scripts may do a number of things, such as

running expensive timers that orchestrate multitudes of tasks, attach their own event listeners

that add extra work which can delay interactivity, and some video and social media third-

parties ship exorbitant amounts of scripts to power the services they provide.

Steps for mitigating third-party scripts is often more of a cultural affair than an engineering

one. If you’re shipping excessive third-party scripts, conduct an audit of each script, what they

do, and profile their activity to find out what performance problems they’re incurring.

If you’re doing considerable UX research, consider collecting your own field data (if the origin

sends a proper Timing-Allow-Origin header) to make informed decisions to avoid the

performance problems that some third-party scripts can cause. For every third-party script you

add, you’re not just incurring loading costs, but also costs during runtime where responsiveness

to user input is crucial.

Bytes

So we know that hosts are shipping a lot of third-party scripts, but what’s the byte cost of first-

versus third-party scripts?

Figure 2.17. Distribution of first- versus third-party JavaScript bytes by host.

Part I Chapter 2 : JavaScript

88 2022 Web Almanac by HTTP Archive

https://developer.mozilla.org/docs/Web/HTTP/Headers/Timing-Allow-Origin
https://developer.mozilla.org/docs/Web/HTTP/Headers/Timing-Allow-Origin
https://almanac.httparchive.org/static/images/2022/javascript/bytes-party.png
https://almanac.httparchive.org/static/images/2022/javascript/bytes-party.png

At nearly every percentile, the amount of bytes third-party scripts ship exceeds that of first-

party scripts. At the 75th percentile, it appears that third-party script payloads are twice that of

first-party scripts. At the 90th percentile, it appears that the amount of third-party scripts sent

over the wire is nearly one megabyte.

If you find your website’s first versus third-party script payloads is similar to the graph above, it

is key that you should work with your engineering organization to try and get this number

down. It can only help your users if you do.

Dynamic import()

Dynamic import() is a variant of the static import syntax that can be run anywhere in a

script, whereas static import expressions must be run at the top of a JavaScript file and

nowhere else.

Dynamic import() allows developers to effectively “split” off chunks of JavaScript code from

their main bundles to be loaded on-demand, which can improve startup performance by loading

less JavaScript upfront.

A staggeringly low 0.34% of all observed mobile pages currently use dynamic import() , while

0.41% of desktop pages use it. That said, it’s common for some bundlers to transform the

dynamic import() syntax into an ES5-compatible alternative. It’s very likely that the feature

is in wider use, just less so in production JavaScript files.

It’s tricky, but a balance can be struck, and it involves gauging the user’s intent. One way of

deferring loading of JavaScript without delaying interactions is to preload34 that JavaScript

when the user signals intent to make an interaction. One example of this could be to defer

loading JavaScript for the validation of a form, and preload that JavaScript once the user has

focused a field in that form. That way, when the JavaScript is requested, it will already be in the

browser cache.

Another way could be to use a service worker to precache JavaScript necessary for interactions

when the service worker is installed. Installation should occur at a point in which the page has

fully loaded in the page’s load event. That way, when the necessary functionality is requested,

Figure 2.18. The percentage of mobile pages using dynamic import() .

0.34%

34. https://developer.mozilla.org/docs/Web/HTML/Link_types/preload

Part I Chapter 2 : JavaScript

2022 Web Almanac by HTTP Archive 89

https://v8.dev/features/dynamic-import
https://v8.dev/features/dynamic-import
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/docs/Web/HTML/Link_types/preload
https://developer.mozilla.org/docs/Web/API/Window/load_event
https://developer.mozilla.org/docs/Web/API/Window/load_event

it can be retrieved from the service worker cache without startup costs.

Dynamic import() is tricky to use, but more widespread adoption of it can help shift the

performance cost of loading JavaScript from startup to a later point in the page lifecycle,

presumably when there will be less network contention for resources. We hope to see

increased adoption of dynamic import() , as the amount of JavaScript we see loaded during

startup is only increasing.

Web workers

Web workers35 are a web platform feature that reduces main thread work by spinning up a

specialized JavaScript file without direct access to the DOM on its own thread. This technology

can be used to offload tasks that could otherwise overwhelm the main thread by doing that

work on a separate thread altogether.

It’s heartening to see that 12% of mobile and desktop pages currently use one or more web

workers to relieve the main thread of work that could potentially make the user experience

worse—but there’s a lot of room for improvement.

If you have significant work that can be done without direct access to the DOM, using a web

worker is a good idea. While you have to use a specialized communication pipeline36 to transfer

data to and from a web worker, it’s entirely possible to make your web pages much more

responsive to user input by using the technology.

However, that communication pipeline can be tricky to set up and use, though there are open

source solutions that can simplify this process. comlink37 is one such library that helps with this,

and can make the developer experience around web workers much more enjoyable.

Whether you manage web workers on your own or with a library, the point is this: if you have

expensive work to do, gauge whether or not it needs to happen on the main thread, and if not,

strongly consider using web workers to make the user experience of your websites as good as it

possibly can be.

Figure 2.19. The number of mobile pages using web workers.

12%

35. https://developer.mozilla.org/docs/Web/API/Web_Workers_API/Using_web_workers
36. https://developer.mozilla.org/docs/Web/API/Web_Workers_API/Using_web_workers#transferring_data_to_and_from_workers_further_details
37. https://www.npmjs.com/package/comlink

Part I Chapter 2 : JavaScript

90 2022 Web Almanac by HTTP Archive

https://developer.mozilla.org/docs/Web/API/Web_Workers_API/Using_web_workers
https://developer.mozilla.org/docs/Web/API/Web_Workers_API/Using_web_workers#transferring_data_to_and_from_workers_further_details
https://www.npmjs.com/package/comlink

Worklets

Worklets are a specialized type of worker that allows lower-level access to rendering pipelines

for tasks such as painting and audio processing. While there are four types of worklets, only

two—paint worklets38 and audio worklets39—are currently implemented in available browsers.

One distinct performance advantage of worklets is that they run on their own threads, freeing

up the main thread from expensive drawing and audio processing work.

With worklets being such niche technologies, it’s not surprising that they’re not widely used.

Paint worklets are an excellent way of offloading expensive processing for generative artwork

onto another thread—not to mention a great technique for adding a bit of flair to the user

experience. For every 1 million websites, only 13 of them use a paint worklet.

Adoption of audio worklets is even lower: only four in a million websites use it. It will be

interesting to see how adoption of these technologies trends over time.

How is JavaScript delivered?

An equally important aspect of JavaScript performance is how we deliver scripts to the

browser, which includes a few common—yet sometimes missed—opportunities for

optimization, starting with how we compress JavaScript.

Compression

Compression is an often-used technique that applies largely to text-based assets, such as

HTML, CSS, SVG images, and yes, JavaScript. There are a variety of compression techniques

Figure 2.20. The percentage of mobile pages that register at least one paint worklet.

0.0013%

Figure 2.21. The percentage of mobile pages that register at least one audio worklet.

0.0004%

38. https://caniuse.com/mdn-api_css_paintworklet
39. https://caniuse.com/mdn-api_audioworklet

Part I Chapter 2 : JavaScript

2022 Web Almanac by HTTP Archive 91

https://caniuse.com/mdn-api_css_paintworklet
https://caniuse.com/mdn-api_audioworklet

that are widely used on the web that can speed up the delivery of scripts to the browser,

effectively shortening the resource load phase.

There are a few compression techniques that can be used to reduce the transfer size of a script,

with the Brotli40 (br) method being the most effective41. Despite Brotli’s excellent support in

modern browsers42, it’s still clear that gzip43 is the most preferred method of compression. This is

likely due to the fact that many web servers use it as the default.

When something is the default, that default sometimes remains in place rather than being

tuned for better performance. Given that only 34% of pages observed are compressing scripts

with Brotli, it’s clear that there’s an opportunity on the table to improve the loading

performance of script resources, but it’s also worth noting that it is an improvement over last

year’s adoption at 30%.

Figure 2.22. Compression of JavaScript by method.

40. https://github.com/google/brotli
41. https://www.smashingmagazine.com/2016/10/next-generation-server-compression-with-brotli/
42. https://caniuse.com/brotli
43. https://www.gzip.org/

Part I Chapter 2 : JavaScript

92 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/javascript/compression-methods.png
https://almanac.httparchive.org/static/images/2022/javascript/compression-methods.png
https://github.com/google/brotli
https://www.smashingmagazine.com/2016/10/next-generation-server-compression-with-brotli/
https://caniuse.com/brotli
https://caniuse.com/brotli
https://www.gzip.org/

The problem is made worse by third-party script providers, which still deploy gzip compression

more widely than Brotli at 60% versus 29%, respectively. Given that third-party JavaScript is a

serious performance issue on the web today, the resource load time of these resources could be

reduced by deploying third-party resources using Brotli instead.

Figure 2.23. Compression methods of script resources by host.

Figure 2.24. Uncompressed resources by size.

Part I Chapter 2 : JavaScript

2022 Web Almanac by HTTP Archive 93

https://almanac.httparchive.org/static/images/2022/javascript/compression-by-host.png
https://almanac.httparchive.org/static/images/2022/javascript/compression-by-host.png
https://almanac.httparchive.org/static/images/2022/javascript/uncompressed.png
https://almanac.httparchive.org/static/images/2022/javascript/uncompressed.png

Thankfully, we’re seeing that it’s only mostly the smallest resources, specifically those third-

party scripts that have payloads smaller than 5 KB, that are being delivered without

compression. This is because compression yields diminishing returns when applied to small

resources, and in fact, the added overhead of dynamic compression may cause delayed

resource delivery. There are, unfortunately, some opportunities across the spectrum to

compress larger resources, such as some first-party scripts with payloads over 100 KB.

Always check your compression settings to ensure you’re delivering the smallest possible script

payloads over the network, and remember: compression speeds up resource delivery. Those

scripts, once delivered to the browser, will be decompressed and their processing time will not

change due to compression. Compression is not a good excuse to deliver huge script payloads

that can make interactivity worse during startup.

Minification

Minification of text assets is a time-tested practice for reducing file size. The practice involves

removing all of the unnecessary spaces and comments from source code in order to reduce

their transfer size. A further step known as uglification is applied to JavaScript, which reduces

all of the variables, class names, and function names in a script to shorter, unreadable symbols.

Lighthouse’s Minify JavaScript44 audit checks for unminified JavaScript.

Figure 2.25. Distribution of unminified JavaScript audit scores.

44. https://web.dev/unminified-javascript/

Part I Chapter 2 : JavaScript

94 2022 Web Almanac by HTTP Archive

https://web.dev/unminified-javascript/
https://almanac.httparchive.org/static/images/2022/javascript/lighthouse-unminified.png
https://almanac.httparchive.org/static/images/2022/javascript/lighthouse-unminified.png

Here, 0.00 represents the worst score whereas 1.00 represents the best score. 68% of mobile

pages are scoring between 0.9 and 1.0 on Lighthouse’s minified JavaScript audit, whereas the

figure for desktop pages is 79%. This means that on mobile, 32% of pages have opportunities to

ship minified JavaScript, whereas that figure for desktop pages is 21%.

At the median, we see that pages are shipping around 12 KB of JavaScript that can be minified.

By the time we get to the 75th and 90th percentiles, however, that number jumps quite a bit,

from 34 KB to about 76 KB. Third-parties are pretty good throughout, up until we get to the

90th percentile, however, where they’re shipping around 19 KB of unminified JavaScript.

Figure 2.26. Distribution of the potential savings by minifying JavaScript.

Part I Chapter 2 : JavaScript

2022 Web Almanac by HTTP Archive 95

https://almanac.httparchive.org/static/images/2022/javascript/lighthouse-unminified-bytes.png
https://almanac.httparchive.org/static/images/2022/javascript/lighthouse-unminified-bytes.png

Given the data we just presented, wasted bytes of unminified JavaScript isn’t too surprising

when you look at the average. First parties are overwhelmingly the biggest culprits in shipping

unminified JavaScript at just over 80%. The remainder are just under 20% that could be doing a

bit more to ship less bytes over the wire.

Minification addresses one of the first principles of web performance: ship less bytes. If you’re

failing the Lighthouse audit for unminified JavaScript, check your bundler’s configuration to

ensure your first party code is as streamlined for production as it can be. If you notice a third-

party script that’s unminified, it might be time to have a chat with that vendor to see what they

can do to fix it. Refer to the Third Parties chapter for an even deeper look into the state of third

parties on the web.

Source maps

Source maps45 are a tool that web developers use to map minified and uglified production code

to their original sources. Source maps are used in production JavaScript files, and are a useful

debugging tool. Source maps can be specified in a comment pointing to a source map file at the

end of a resource, or as the SourceMap HTTP response header.

Figure 2.27. Average wasted bytes of unminified JavaScript.

45. https://firefox-source-docs.mozilla.org/devtools-user/debugger/how_to/use_a_source_map/index.html

Part I Chapter 2 : JavaScript

96 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/javascript/lighthouse-unminified-avg.png
https://almanac.httparchive.org/static/images/2022/javascript/lighthouse-unminified-avg.png
https://firefox-source-docs.mozilla.org/devtools-user/debugger/how_to/use_a_source_map/index.html
https://developer.mozilla.org/docs/Web/HTTP/Headers/SourceMap
https://developer.mozilla.org/docs/Web/HTTP/Headers/SourceMap

14% of JavaScript resources accessed through mobile devices deliver a source map comment to

a source map that is publicly accessible, whereas 15% of JavaScript resources accessed through

desktop devices deliver them. However, the story is quite different for pages using a source

map HTTP header.

Only 0.12% of requests for JavaScript resources on mobile devices used a source map HTTP

header, whereas the number for desktop devices is 0.07%.

From a performance perspective, this doesn’t mean much. Source maps are a developer

experience enhancement. What you should avoid, however, is the use of inline source maps,

which insert a base64 representation of the original source into a production-ready JavaScript

asset. Inlining source maps means that you’re not just sending your JavaScript resources to

users, but also their source maps, which can lead to oversized JavaScript assets that take longer

to download and process.

Responsiveness

JavaScript affects more than just startup performance. When we rely on JavaScript to provide

interactivity, those interactions are driven by event handlers that take time to execute.

Depending on the complexity of interactions and the amount of scripts involved to drive them,

users may experience poor input responsiveness.

Metrics

Many metrics are used to assess responsiveness in both the lab and the field, and tools such as

Lighthouse, Chrome UX Report (CrUX), and HTTP Archive track these metrics to provide a

data-driven view of the current state of responsiveness on today’s websites. Unless otherwise

Figure 2.28. The percentage of mobile pages specifying source map comments to publicly accessible
source maps.

14%

Figure 2.29. The number of mobile pages specifying source map headers.

0.12%

Part I Chapter 2 : JavaScript

2022 Web Almanac by HTTP Archive 97

noted, all of the following graphs depict the 75th percentile—the threshold for which Core Web

Vitals are determined to be passing46—of that metric at the origin level.

The first of these is First Input Delay (FID)47, which records the input delay of the very first

interaction made with a page. The input delay is the time between which the user has

interacted with the page and when the event handlers for that interaction begin to run. It’s

considered a load responsiveness metric that focuses on the first impression a user gets when

interacting with a website.

This chart shows the distribution of all websites’ 75th percentile FID values. The median

website has a FID value of 0 ms for at least 75% of both desktop and phone user experiences.

This “perfect FID” experience even extends into the 75th percentile of websites. Only when we

get to the 90th percentile do we start to see imperfect FID values, but only 25 ms.

Given that the “good” FID threshold is 100 ms48, we can say that at least 90% of websites meet

this bar. In fact, we know from the analysis done in the Performance chapter that 100% of

websites actually have “good” FID experiences on desktop devices, and 92% on mobile devices.

FID is an unusually permissive metric.

Figure 2.30. The distribution of websites’ 75th percentile FID values.

46. https://web.dev/vitals/#core-web-vitals
47. https://web.dev/fid/
48. https://web.dev/fid/#what-is-a-good-fid-score

Part I Chapter 2 : JavaScript

98 2022 Web Almanac by HTTP Archive

https://web.dev/vitals/#core-web-vitals
https://web.dev/vitals/#core-web-vitals
https://web.dev/fid/
https://almanac.httparchive.org/static/images/2022/javascript/fid.png
https://almanac.httparchive.org/static/images/2022/javascript/fid.png
https://web.dev/fid/#what-is-a-good-fid-score

In order to get a comprehensive view of page responsiveness across the entire page lifecycle,

though, we need to look at Interaction to Next Paint (INP)49, which assesses all keyboard, mouse,

and touch interactions made with a page and selects a high percentile of interaction latency

that’s intended to represent overall page responsiveness.

Consider that a “good” INP score is 200 milliseconds50 or less. At the median, both mobile and

desktop score below this threshold, but the 75th percentile is another story, with both mobile

and desktop segments well within the “needs improvement” range. This data, quite unlike FID,

suggests that there are many opportunities for websites to do everything they can to run fewer

long tasks51 on pages, which are a key contributor to less-than-good INP scores.

Figure 2.31. The distribution of websites’ 75th percentile INP values.

49. https://web.dev/inp/
50. https://web.dev/inp/#what's-a-%22good%22-inp-value
51. https://web.dev/long-tasks-devtools/

Part I Chapter 2 : JavaScript

2022 Web Almanac by HTTP Archive 99

https://almanac.httparchive.org/static/images/2022/javascript/inp.png
https://almanac.httparchive.org/static/images/2022/javascript/inp.png
https://web.dev/inp/
https://web.dev/inp/#what's-a-%22good%22-inp-value
https://web.dev/long-tasks-devtools/

Dovetailing into long tasks, there’s the Total Blocking Time (TBT)52 metric, which calculates the

total blocking time of long tasks during startup.

Note that unlike the preceding stats on FID and INP, TBT and TTI (below) are not sourced from

real-user data. Instead, we’re measuring synthetic performance in simulated desktop and

mobile environments with device-appropriate CPU and network throttling enabled. As a result

of this approach, we get exactly one TBT and TTI value for each page, rather than a distribution

of real-user values across the entire website.

Considering that INP correlates very well with TBT53, it’s reasonable to assume that high TBT

scores may produce poorer INP scores. Using our synthetic approach, we see a wide gulf

between desktop and mobile segments, indicating that desktop devices with better processing

power and memory are outperforming less capable mobile devices by a wide margin. At the

75th percentile, a page has nearly 3.6 seconds of blocking time, which qualifies as a poor

experience.

Figure 2.32. The distribution of pages’ lab-based TBT values.

52. https://web.dev/tbt/
53. https://github.com/GoogleChromeLabs/chrome-http-archive-analysis/blob/main/notebooks/HTTP_Archive_TBT_and_INP.ipynb

Part I Chapter 2 : JavaScript

100 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/javascript/tbt.png
https://almanac.httparchive.org/static/images/2022/javascript/tbt.png
https://web.dev/tbt/
https://github.com/GoogleChromeLabs/chrome-http-archive-analysis/blob/main/notebooks/HTTP_Archive_TBT_and_INP.ipynb

Finally, we come to Time to Interactive (TTI)54, which is considered “good” if the metric comes in

at under 5 seconds. Given that only the 10th percentile barely slips in under the 5 second mark,

most websites in our simulated environment are relying on JavaScript to such an extent that

pages are unable to become interactive within a reasonable timeframe—especially the 90th

percentile, which takes a staggering 41.2 seconds to become interactive.

Long tasks/blocking time

As you may have gleaned from the previous section, the principal cause of poor interaction

responsiveness is long tasks. To clarify, a long task is any task that runs on the main thread for

longer than 50 milliseconds. The length of the task beyond 50 milliseconds is that task’s

blocking time, which can be calculated by subtracting 50 milliseconds from the task’s total time.

Long tasks are a problem because they block the main thread from doing any other work until

that task is finished. When a page has lots of long tasks, the browser can feel like it’s sluggish to

respond to user input. In extreme cases, it can even feel like the browser isn’t responding at all.

Figure 2.33. The distribution of the TTI scores by origin and percentile.

54. https://web.dev/tti/

Part I Chapter 2 : JavaScript

2022 Web Almanac by HTTP Archive 101

https://almanac.httparchive.org/static/images/2022/javascript/tti.png
https://almanac.httparchive.org/static/images/2022/javascript/tti.png
https://web.dev/tti/

The median page encounters 19 long tasks on mobile and 7 long tasks on desktop devices. This

makes sense when you consider that most desktop devices have greater processing power and

memory resources than mobile devices, and are actively cooled.

However, the picture gets much worse at higher percentiles. Long tasks at the 75th percentile

per page are 32 and 12 on mobile and desktop, respectively.

Figure 2.34. The distribution of the number of long tasks per page.

Part I Chapter 2 : JavaScript

102 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/javascript/long-tasks.png
https://almanac.httparchive.org/static/images/2022/javascript/long-tasks.png

It’s not enough to know how many long tasks there are per page—we need to understand the

total time those tasks are taking on pages. The median mobile page has 3.59 seconds of time

dedicated to long tasks, whereas desktop pages have far less at 0.74 seconds.

The 75th percentile suggests a much worse picture for those on mobile devices, coming in at

nearly 6.6 seconds of processing time per page dedicated to handling long tasks. This is a lot of

time the browser is spending on intense work that could be optimized or even possibly be

moved to web workers on a different thread. In any case, these results spell trouble for the

mobile web and responsiveness.

Scheduler API

Scheduling JavaScript tasks has historically been deferred to the browser. There are newer

methods such as requestIdleCallback and queueMicrotask , but these APIs schedule

tasks in a coarse way, and—especially in the case of queueMicrotask —can cause

performance issues if misused.

The Scheduler API has recently been released, and gives developers finer control over

scheduling tasks based on priority—though it is currently only limited to Chromium-based

browsers55.

Figure 2.35. Distribution of long tasks time per page.

55. https://caniuse.com/mdn-api_scheduler_posttask

Part I Chapter 2 : JavaScript

2022 Web Almanac by HTTP Archive 103

https://almanac.httparchive.org/static/images/2022/javascript/long-tasks-time.png
https://almanac.httparchive.org/static/images/2022/javascript/long-tasks-time.png
https://developer.mozilla.org/docs/Web/API/Window/requestIdleCallback
https://developer.mozilla.org/docs/Web/API/Window/requestIdleCallback
https://developer.mozilla.org/docs/Web/API/queueMicrotask
https://developer.mozilla.org/docs/Web/API/queueMicrotask
https://caniuse.com/mdn-api_scheduler_posttask
https://caniuse.com/mdn-api_scheduler_posttask

Only 20 per million (0.002%) mobile pages are currently shipping JavaScript that uses the

Scheduler API, whereas 30 per million (0.003%) desktop pages do. This is not surprising,

considering the lack of documentation on this very new feature, and its limited support.

However, we expect this number to increase as documentation on the feature becomes

available, and especially if it is used in frameworks. We believe that the adoption of this

important new feature will eventually result in better user experience outcomes.

Synchronous XHR

AJAX—or usage of the XMLHttpRequest (XHR) method to asynchronously retrieve data and

update information on the page without a navigation request—was a very popular method of

creating dynamic user experiences. It has largely been replaced by the asynchronous fetch
method, but XHR is still supported in all major browsers56.

XHR has a flag that allows you to make synchronous requests. Synchronous XHR57 is harmful for

performance because the event loop and main thread is blocked until the request is finished,

resulting in the page hanging until the data becomes available. fetch is a much more effective

and efficient alternative with a simpler API, and has no support for synchronous fetching of

data.

While synchronous XHR is only used on 2.5% of mobile pages and 2.8% of desktop pages, its

continued use—no matter how small—is still a signal that some legacy applications may be

relying on this outdated method that harms the user experience.

Avoid using synchronous XHR, and XHR in general. fetch is a much more ergonomic

alternative that lacks synchronous functionality by design. Your pages will perform better

without synchronous XHR, and we hope someday to see this number fall to zero.

Figure 2.36. The percentage of mobile pages using the Scheduler API.

0.002%

Figure 2.37. The percentage of mobile pages using synchronous XHR.

2.5%

56. https://caniuse.com/mdn-api_xmlhttprequest
57. https://developer.mozilla.org/docs/Web/API/XMLHttpRequest/Synchronous_and_Asynchronous_Requests#synchronous_request

Part I Chapter 2 : JavaScript

104 2022 Web Almanac by HTTP Archive

https://developer.mozilla.org/docs/Web/API/XMLHttpRequest
https://developer.mozilla.org/docs/Web/API/XMLHttpRequest
https://developer.mozilla.org/docs/Web/API/Fetch_API
https://developer.mozilla.org/docs/Web/API/Fetch_API
https://caniuse.com/mdn-api_xmlhttprequest
https://developer.mozilla.org/docs/Web/API/XMLHttpRequest/Synchronous_and_Asynchronous_Requests#synchronous_request

document.write

Before the introduction of DOM insertion methods (appendChild and others, for example),

document.write was used to insert content at the position the document.write was

made in the document.

document.write is very problematic. For one, it blocks the HTML parser, and is problematic

for a number of other reasons the HTML spec itself warns against its use58. On slow

connections, blocking document parsing to append nodes in this way creates performance

problems that are entirely avoidable.

A staggering 18% of pages observed are still using document.write to add content to the

DOM in lieu of proper insertion methods, whereas 17% of desktop pages are still doing so. The

explanation for this could be legacy applications that haven’t been rewritten to use the

preferred DOM methods to insert new nodes into the document, and even some third-party

scripts that still use it.

We hope to see a decline in this trend. All major browsers explicitly warn against using this

method. While it isn’t deprecated just yet, its existence in browsers in the years to come isn’t

guaranteed. If document.write calls are in your website, you should prioritize removing

them as soon as possible.

Legacy JavaScript

JavaScript has evolved considerably over the last several years. The introduction of new

language features has turned JavaScript into a more capable and elegant language that helps

developers to write more concise JavaScript, resulting in less JavaScript loaded—provided

those features haven’t been unnecessarily transformed into a legacy syntax by using a

transpiler such as Babel.

Lighthouse currently checks for Babel transforms that may be unnecessary on the modern web,

such as transforming use of async and await , JavaScript classes59, and other newer, yet

widely supported language features.

Figure 2.38. The number of mobile pages using document.write .

18%

58. https://html.spec.whatwg.org/multipage/dynamic-markup-insertion.html#document.write()
59. https://developer.mozilla.org/docs/Web/JavaScript/Reference/Classes

Part I Chapter 2 : JavaScript

2022 Web Almanac by HTTP Archive 105

https://developer.mozilla.org/docs/Web/API/Node/appendChild
https://developer.mozilla.org/docs/Web/API/Node/appendChild
https://developer.mozilla.org/docs/Web/API/Document/write
https://developer.mozilla.org/docs/Web/API/Document/write
https://html.spec.whatwg.org/multipage/dynamic-markup-insertion.html#document.write()
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Classes

Just over two thirds of mobile pages are shipping JavaScript resources that are being

transformed, or otherwise contain unnecessary legacy JavaScript.

Transformations can add a lot of extra bytes to production JavaScript for the sake of

compatibility, but unless there is a necessity to support older browsers, many of these

transforms are unnecessary, and can harm startup performance. That so many pages on

mobile—and 68% of pages on desktop—are shipping these transforms is concerning.

Babel is doing much to solve this problem out of the box, such as through the compiler

assumptions feature60, but Babel is still driven by user-defined configurations, and can only do

so much in the presence of outdated configuration files.

As mentioned above, we strongly encourage developers to carefully review their Babel61 and

Browserslist62 configurations to ensure that the minimum amount of transforms are applied to

code in order for them to work in required browsers. Doing so can result in large reduction of

bytes shipped to end users. Developers have a lot of work to do in this area, and we hope to see

this figure decline over time now that the language’s evolution has relatively stabilized.

How is JavaScript used?

There’s more than one way to build a web page. While some may opt to use the web platform

directly, it’s undeniable that the trend in the web developer industry is to reach for abstractions

that make our work easier to do and reason about. As is the case with previous years, we’ll be

exploring the role of libraries and frameworks, as well as how frequently those libraries and

frameworks present security vulnerabilities that can make the web a riskier place for users.

Libraries and frameworks

Libraries and frameworks are a huge part of the developer experience—one that has the

potential to harm performance through framework overhead. Though developers have largely

accepted this trade-off, understanding what libraries and frameworks are commonly used on

Figure 2.39. The percentage of mobile pages that ship legacy JavaScript.

67%

60. https://babeljs.io/docs/en/assumptions
61. https://babeljs.io/docs/en/configuration
62. https://github.com/browserslist/browserslist

Part I Chapter 2 : JavaScript

106 2022 Web Almanac by HTTP Archive

https://babeljs.io/docs/en/assumptions
https://babeljs.io/docs/en/assumptions
https://babeljs.io/docs/en/configuration
https://github.com/browserslist/browserslist

the web is extremely important, as it informs our understanding of how the web is built. In this

section, we’ll be taking a look at the state of libraries and frameworks across the web in 2022.

Library usage

To understand the usage of libraries and frameworks, HTTP Archive uses Wappalyzer to detect

the technologies used on a page.

It’s still no surprise that jQuery is by far the most used library on the web today. Part of that is

because WordPress is used on 35% of sites, but even so, the majority of jQuery usage occurs

outside of the WordPress platform.

While jQuery is relatively small and reasonably quick at what it does, it still represents a certain

amount of overhead in applications. Most of what jQuery offers is now doable with native DOM

APIs63, and may be unnecessary in today’s web applications.

Figure 2.40. Adoption of top libraries and frameworks.

63. https://youmightnotneedjquery.com/

Part I Chapter 2 : JavaScript

2022 Web Almanac by HTTP Archive 107

https://almanac.httparchive.org/static/images/2022/javascript/frameworks-libraries.png
https://almanac.httparchive.org/static/images/2022/javascript/frameworks-libraries.png
https://youmightnotneedjquery.com/
https://youmightnotneedjquery.com/

The usage of core-js is also not surprising, as many web applications transform their code with

Babel, which often uses core-js to fill in missing gaps in APIs across browsers. As browsers

mature, this figure should drop—and that would be a good thing indeed, as modern browsers

are more capable than ever, and shipping core-js code could end up being wasted bytes.

React usage notably remained the same from last year at 8%, which may be a signal that

adoption of the library has plateaued due to an increasing amount of choices in the JavaScript

ecosystem.

Libraries used together

It’s not an uncommon scenario to see multiple frameworks and libraries used on the same page.

As with last year, we’ll examine this phenomenon to gain insight into how many libraries and

frameworks have been used together in 2022.

It’s clear though that jQuery has some serious staying power, with some combination of it, its UI

framework, and its migration plugin occurring in the top seven spots, with core-js having a

prominent role in library usage as well.

Figure 2.41. Analysis of libraries and frameworks used together on observed pages.

Libraries Desktop Mobile

jQuery 10.19% 10.33%

jQuery, jQuery Migrate 4.30% 4.94%

core-js, jQuery, jQuery Migrate 2.48% 2.80%

core-js, jQuery 2.78% 2.74%

jQuery, jQuery UI 2.40% 2.07%

core-js, jQuery, jQuery Migrate, jQuery UI 1.18% 1.36%

jQuery, jQuery Migrate, jQuery UI 0.88% 0.99%

GSAP, Lodash, Polyfill, React 0.48% 0.93%

Modernizr, jQuery 0.87% 0.86%

core-js 0.92% 0.85%

Part I Chapter 2 : JavaScript

108 2022 Web Almanac by HTTP Archive

Security vulnerabilities

Given the wide proliferation of JavaScript on today’s web, and with the advent of installable

JavaScript packages, it’s no surprise that security vulnerabilities exist in the JavaScript

ecosystem.

While 57% of mobile pages serving up a vulnerable JavaScript library or framework is

significant, this figure is down from last year’s figure of 64%. This is encouraging, but there’s

quite a bit of work to be done to lower this figure. We hope that as more security vulnerabilities

are patched, developers will be incentivized to update their dependencies to avoid exposing

their users to harm.

Figure 2.42. The percentage of mobile pages that download a vulnerable JavaScript library or
framework.

57%

Figure 2.43. The percentage of pages having known JavaScript vulnerabilities among the top ten
most commonly used libraries and frameworks.

Library or framework Desktop Mobile

jQuery 49.12% 48.80%

jQuery UI 16.01% 14.88%

Bootstrap 11.53% 11.19%

Moment.js 4.54% 3.91%

Underscore 3.41% 3.11%

Lo-Dash 2.52% 2.44%

GreenSock JS 1.65% 1.62%

Handlebars 1.27% 1.12%

AngularJS64 0.99% 0.79%

Mustache 0.44% 0.57%

64. https://angularjs.org

Part I Chapter 2 : JavaScript

2022 Web Almanac by HTTP Archive 109

https://angularjs.org/

With jQuery being the most popular library in use on the web today, it’s no surprise that it and

its associated UI framework represents a fair amount of the security vulnerabilities that users

are exposed to on the web today. This could likely be that some developers are still using older

versions of these scripts which don’t take advantage of fixes to known vulnerabilities.

A notable entry is Bootstrap, which is a UI framework that helps developers to quickly

prototype or build new layouts without using CSS directly. Given the release of newer CSS

layout modes such as Grid or Flexbox, we may see usage of Bootstrap decrease over time, or in

lieu of that, see developers update their Bootstrap dependencies to ship more safe and secure

websites.

Regardless of what libraries and frameworks you use, be sure to regularly update your

dependencies wherever possible to avoid exposing your users to harm. While package updates

do result in some amount of refactoring or code fixes from time to time, the effort is worth the

reduction in liability and increase in user safety.

Web components and shadow DOM

For some time, web development has been driven by a componentization model employed by

numerous frameworks. The web platform has similarly evolved to provide encapsulation of

logic and styling through web components and the shadow DOM. To kick off this year’s analysis,

we’ll begin with custom elements65.

This figure is down a bit from last year’s analysis of custom element usage on desktop pages,

which was 3%. With the advantages that custom elements provide and their reasonably broad

support in modern browsers, we’re hoping that the web component model will compel

developers to leverage web platform built-ins to create faster user experiences.

Figure 2.44. The percentage of desktop pages that used custom elements.

2.0%

Figure 2.45. The percentage of mobile pages that used shadow DOM.

0.39%
65. https://developers.google.com/web/fundamentals/web-components/customelements

Part I Chapter 2 : JavaScript

110 2022 Web Almanac by HTTP Archive

https://developers.google.com/web/fundamentals/web-components/customelements

Shadow DOM66 allows you to create dedicated nodes in a document that contain their own

scope for sub-elements and styling, isolating a component from the main DOM tree. Compared

to last year’s figure of 0.37% of all pages using shadow DOM, adoption of the feature has

remained much the same, with 0.39% of mobile pages and 0.47% of desktop pages using it.

The template element helps developers reuse markup patterns. Their contents render only

when referenced by JavaScript. Templates work well with web components, as the content that

is not yet referenced by JavaScript is then appended to a shadow root using the shadow DOM.

Roughly 0.05% of web pages on both desktop and mobile are currently using the template
element. Though templates are well supported in browsers, their adoption is currently scant.

The HTML is attribute is an alternate way of inserting custom elements into the page. Rather

than using the custom element’s name as the HTML tag, the name is passed to any standard

HTML element, which implements the web component logic. The is attribute is a way to use

web components that can still fall back to standard HTML element behavior if web components

fail to be registered on the page.

This is the first year we are tracking usage of this attribute, and unsurprisingly, its adoption is

lower than custom elements themselves. Due to the lack of support in Safari, this means that

browsers on iOS and Safari on macOS can’t make use of the attribute, possibly contributing to

the attribute’s limited usage.

Conclusion

The state of JavaScript is largely continuing the way trends would have suggested last year.

We’re shipping more of it, for sure, but we’re also trying to mitigate the ill effects of excessive

Figure 2.46. The percentage of mobile pages that use templates.

0.05%

Figure 2.47. The percentage of mobile pages that used the is attribute.

0.08%

66. https://developers.google.com/web/fundamentals/web-components/shadowdom

Part I Chapter 2 : JavaScript

2022 Web Almanac by HTTP Archive 111

https://developers.google.com/web/fundamentals/web-components/shadowdom
https://developer.mozilla.org/docs/Web/HTML/Global_attributes/is
https://developer.mozilla.org/docs/Web/HTML/Global_attributes/is

JavaScript through increased usage of techniques such as minification, resource hints,

compression, and even down to the libraries we use.

The state of JavaScript is a constantly evolving phenomenon. It’s clear that we have an

increased reliance on it more than ever, but that spells trouble for the collective user

experience of the web. We need to do all we can—and more—to stem the tide of how much

JavaScript we ship on production websites.

As the web platform matures, we’re hoping that we see increased direct adoption of its various

APIs and features where it makes sense to do so. For those experiences that require

frameworks for a better developer experience, we’re hoping to see additional optimizations and

opportunities for framework authors to adopt new APIs to help them deliver on both a better

developer experience and better experiences for users.

Let’s hope that next year signals a shift in the trend. In the meantime, let’s continue to do all we

can67 to make the web as fast as we possibly can, while keeping an eye on both lab68 and field69

data along the way.

Author

Jeremy Wagner

@malchata malchata https://jlwagner.net/

Jeremy Wagner is a technical writer for Google on performance and Core Web

Vitals. He has also written for A List Apart, CSS-Tricks, and Smashing Magazine.

Jeremy will someday relocate to the remote wilderness where sand has not yet

been taught to think. Until then, he continues to reside in Minnesota’s Twin Cities

with his wife and stepdaughters, bemoaning the existence of strip malls.

67. https://web.dev/fast/
68. https://web.dev/lab-and-field-data-differences/#lab-data
69. https://web.dev/lab-and-field-data-differences/#field-data

Part I Chapter 2 : JavaScript

112 2022 Web Almanac by HTTP Archive

https://web.dev/fast/
https://web.dev/fast/
https://web.dev/lab-and-field-data-differences/#lab-data
https://web.dev/lab-and-field-data-differences/#field-data
https://twitter.com/malchata
https://github.com/malchata
https://jlwagner.net/

Part I Chapter 3

Markup

Written by Jens Oliver Meiert
Reviewed by Brian Kardell and Simon Pieters
Analyzed by Rick Viscomi
Edited by Barry Pollard

Introduction

As the 2020 chapter said70, without HTML there are no web pages, no web sites, no web apps.

You can say that without HTML, there’s no Web. That makes HTML one of the most important

web standards, if not the most important web standard.

Accordingly, like every year, we used the millions of pages in our data set—7.9 million in the

mobile set, 5.4 million in the desktop set, with overlap—to also look at HTML. This chapter

doesn’t cover “everything” there is about HTML, so we explicitly encourage you to also analyze

the data we gathered71 and to share your own conclusions—and when you do, tag them:

#htmlalmanac72.

70. https://almanac.httparchive.org/en/2020/markup#introduction
71. https://docs.google.com/spreadsheets/d/1grkd2_1xSV3jvNK6ucRQ0OL1HmGTsScHuwA8GZuRLHU/edit
72. https://twitter.com/hashtag/htmlalmanac

Part I Chapter 3 : Markup

2022 Web Almanac by HTTP Archive 113

https://almanac.httparchive.org/en/2020/markup#introduction
https://docs.google.com/spreadsheets/d/1grkd2_1xSV3jvNK6ucRQ0OL1HmGTsScHuwA8GZuRLHU/edit
https://docs.google.com/spreadsheets/d/1grkd2_1xSV3jvNK6ucRQ0OL1HmGTsScHuwA8GZuRLHU/edit
https://twitter.com/hashtag/htmlalmanac

Document data

There’s much to be curious about when it comes to how we write HTML. We can ask lots of

questions, but when it comes to HTML in general, let’s have a look at how our HTML is sent to

our browsers, before we even get into the contents of the markup itself.

Doctypes

Let’s start with doctypes—which one is the most popular? But you know the answer to this one:

It’s the short, simple, boring standard HTML doctype, that is, <!DOCTYPE html> .

90% of all mobile pages use it—as the mobile data set is largest, this chapter will usually work

with that data. Next most popular is XHTML 1.0 Transitional (3.9%, down from 4.6% in 202173).

After that it’s no doctype being set at all at 2.7%, up from 2.5% last year.

Figure 3.1. Doctype usage.

Doctype Desktop Mobile

html 88.1% 90.0%

html -//w3c//dtd xhtml 1.0 transitional//en
http://www.w3.org/tr/xhtml1/dtd/
xhtml1-transitional.dtd

4.7% 3.9%

No doctype 3.0% 2.7%

html -//w3c//dtd xhtml 1.0 strict//en
http://www.w3.org/tr/xhtml1/dtd/xhtml1-strict.dtd

1.2% 1.1%

html -//w3c//dtd html 4.01 transitional//en
http://www.w3.org/tr/html4/loose.dtd

0.9% 0.6%

html -//w3c//dtd html 4.01 transitional//en 0.4% 0.4%

Figure 3.2. Mobile using the standard HTML doctype.

90%

73. https://almanac.httparchive.org/en/2021/markup#doctypes

Part I Chapter 3 : Markup

114 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/en/2021/markup#doctypes

Compression

Are HTML documents being compressed? How many? How? 86% of them are—with 58% (down

5.8% since last year) overall being gzip-compressed, and 28% (up 6.1%) being compressed using

Brotli. Overall, slightly more documents are being compressed, and compressed more

effectively.

Figure 3.3. HTML document content encoding.

Part I Chapter 3 : Markup

2022 Web Almanac by HTTP Archive 115

https://almanac.httparchive.org/static/images/2022/markup/content-encoding.png
https://almanac.httparchive.org/static/images/2022/markup/content-encoding.png

Languages

What about languages? In our data set, 35% of pages used a lang attribute mapping to

English; 17% had no language set; and you already see the difficulties—the sample is likely

biased and also not as big as to reflect all of the world, and no lang attribute being used is not

equaling no language being set so, this isn’t something our data would be useful for.

Conformance

Do documents conform with the HTML specification—i.e., are they valid? A quick way for you to

tell is by using a tool like the W3C markup validation service74.

We didn’t and we couldn’t check this yet. So why include this section?

The reason to at least mention conformance is that if you don’t check on conformance, if you

Figure 3.4. Most popular regional HTML lang values.

74. https://validator.w3.org/

Part I Chapter 3 : Markup

116 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/markup/html-languages.png
https://almanac.httparchive.org/static/images/2022/markup/html-languages.png
https://validator.w3.org/

don’t validate, there’s a good chance—in practice, effectively a 100% chance75—you end up

writing at least some fictitious and fantasy (and therefore wrong) HTML. But HTML isn’t fiction

or fantasy—it’s a hard technical standard with clear rules on what works and what doesn’t.

For a professional, it’s good to know these rules. It’s good work to produce code that works and

that doesn’t contain anything superfluous, too. And both of that—learning and not shipping

anything non-working or superfluous—is why conformance matters, and why validation

matters.

We don’t have conformance data to share in the Web Almanac yet, but that doesn’t mean the

point is any less important. And if you haven’t focused on conformance yet—start validating

your HTML output. Maybe one of the next editions of the Web Almanac will have some positive

news to share because of you.

Document size

HTML payload and document size are a staple in this series—we’ve looked at this information

since 2019. But the trend is clear, and while it follows a common theme that other chapters will

confirm, too, it’s not a great one:

After some brief relief in 2020, document size has continued growing in 2021, and again in

Figure 3.5. Median transfer size of HTML document.

75. https://meiert.com/en/blog/valid-html-2022/

Part I Chapter 3 : Markup

2022 Web Almanac by HTTP Archive 117

https://meiert.com/en/blog/valid-html-2022/
https://almanac.httparchive.org/static/images/2022/markup/html-document-transfer-size.png
https://almanac.httparchive.org/static/images/2022/markup/html-document-transfer-size.png

2022, with a median transfer size of 30 kB in our mobile data set.

One way to counter this trend is to write HTML, the HTML way (and not the XHTML way)76, as

that would already result in smaller HTML transfer size. Disclosure: Your author here likes to come

up with HTML writing classifications, and enjoys promoting minimal HTML.

Elements

If you’re not including the svg and math elements—because they’re specified outside of

HTML—the current HTML specification currently consists of 111 elements.

Elements, not tags, because we’re not referring to mere start or end tags, like or </ins> . And

some people count HTML elements differently, but most important is to be clear about how you’re

counting77.

What can we observe?

Element diversity

The first thing we can note is that developers use slightly more different elements per page

Figure 3.6. Distribution of distinct elements per page.

76. https://css-tricks.com/write-html-the-html-way-not-the-xhtml-way/
77. https://meiert.com/en/blog/the-number-of-html-elements/

Part I Chapter 3 : Markup

118 2022 Web Almanac by HTTP Archive

https://css-tricks.com/write-html-the-html-way-not-the-xhtml-way/
https://meiert.com/en/blog/the-number-of-html-elements/
https://meiert.com/en/blog/the-number-of-html-elements/
https://almanac.httparchive.org/static/images/2022/markup/element-count-distribution.png
https://almanac.httparchive.org/static/images/2022/markup/element-count-distribution.png

now, with a median of 32 different elements per document.

The median is up from 31 elements in 202178, and 30 elements in 202079. As this is a trend

throughout, it may be a tender sign that developers put HTML elements to better use, by using

more of them for what they’re there for.

Alas, there’s another trend which aligns with an increasing document size, and that’s a growing

number of elements per page in total:

The median is currently at 653 elements per page, up from 616 in 2021, and 587 in 2020—all

per the respective mobile data set. Do we publish more content, requiring more elements to

hold them (something like, more paragraphs per text, more p elements)? Or is this just another

sign of an unchecked div pandemic? Our data doesn’t answer this but it is probably due to

both—and more—reasons.

Top elements

The following elements are used most frequently:

Figure 3.7. Distribution of elements per page.

78. https://almanac.httparchive.org/en/2021/markup#element-diversity
79. https://almanac.httparchive.org/en/2020/markup#element-diversity

Part I Chapter 3 : Markup

2022 Web Almanac by HTTP Archive 119

https://almanac.httparchive.org/en/2021/markup#element-diversity
https://almanac.httparchive.org/en/2020/markup#element-diversity
https://almanac.httparchive.org/static/images/2022/markup/element-count-distribution.png
https://almanac.httparchive.org/static/images/2022/markup/element-count-distribution.png

The div element is—by far—the most popular element: We found 2,123,819,193 occurrences

in the mobile data set, and 1,522,017,185 of them in our desktop data set.

Divitis80 is real.

If you wonder about the odd one out, the i element, it stands to reason that this is still largely

due to Font Awesome81 and its arguable misuse of this element. The element has also a bad

reputation because during XHTML times, everyone suggested to use em instead—but that

advice wasn’t sound, and i elements have their use cases.

When it comes to what elements are being used on the most documents, the list looks a little

different:

Figure 3.8. Most used elements.

2019 2020 2021 2022

div div div div

a a a a

span span span span

li li li li

img img img img

script script script script

p p p p

option link link link

i meta i

option i meta

Figure 3.9. Percentage of elements which are div elements.

29%

80. https://en.wiktionary.org/wiki/divitis
81. https://fontawesome.com/

Part I Chapter 3 : Markup

120 2022 Web Almanac by HTTP Archive

https://en.wiktionary.org/wiki/divitis
https://developer.mozilla.org/docs/Web/HTML/Element/i
https://developer.mozilla.org/docs/Web/HTML/Element/i
https://fontawesome.com/
https://html.spec.whatwg.org/multipage/text-level-semantics.html#the-i-element
https://html.spec.whatwg.org/multipage/text-level-semantics.html#the-i-element

It’s not a surprise that nearly every document uses html , head , or body tags—they are

automatically inserted in the DOM and that is what is being counted here. That the numbers

are slightly less than 100% is due to a small number of pages that break detection by overriding

the JavaScript APIs we use—for example, MooTools82 overriding the JSON.stringify() API.

It’s a lot more surprising to miss title on 1% of all sampled documents—this element is not

optional, and not being inserted in the DOM, and its omission an indicator for lack of

conformance checking.

Figure 3.10. Adoption of top HTML elements.

82. https://mootools.net/

Part I Chapter 3 : Markup

2022 Web Almanac by HTTP Archive 121

https://almanac.httparchive.org/static/images/2022/markup/adoption-of-top-html-elements.png
https://almanac.httparchive.org/static/images/2022/markup/adoption-of-top-html-elements.png
https://mootools.net/

The elements that then follow are old friends—especially a , img , and meta have been

popular elements ever since Ian Hickson’s seminal HTML study back83 in 2005.

What’s the least used HTML element that’s part of the current standard, you ask? That’s samp ,

with a mere 2,002 findings in our mobile set.

Custom elements

Custom elements84—elements we can loosely identify by their inner-name use of a hyphen—also

made it into our samples again. This year, however, the Top 10 is entirely dominated by Slider

Revolution85:

That’s impressive—but gives us little to work with other than saying that Slider Revolution is

used on roughly 2% of all sampled pages.

What are the next popular custom elements that are not part of Slider Revolution?

Figure 3.11. Most used custom elements.

Custom element Desktop Mobile

rs-module-wrap 2.1% 2.3%

rs-module 2.1% 2.3%

rs-slides 2.1% 2.3%

rs-slide 2.1% 2.3%

rs-sbg-wrap 2.0% 2.2%

rs-sbg-px 2.0% 2.2%

rs-sbg 2.0% 2.2%

rs-progress 2.0% 2.2%

rs-layer 1.8% 2.0%

rs-mask-wrap 1.8% 2.0%

83. https://web.archive.org/web/20060203035414/http://code.google.com/webstats/index.html
84. https://html.spec.whatwg.org/multipage/custom-elements.html#custom-elements-core-concepts
85. https://www.sliderrevolution.com/

Part I Chapter 3 : Markup

122 2022 Web Almanac by HTTP Archive

https://web.archive.org/web/20060203035414/http://code.google.com/webstats/index.html
https://html.spec.whatwg.org/multipage/text-level-semantics.html#the-samp-element
https://html.spec.whatwg.org/multipage/text-level-semantics.html#the-samp-element
https://html.spec.whatwg.org/multipage/custom-elements.html#custom-elements-core-concepts
https://www.sliderrevolution.com/
https://www.sliderrevolution.com/

This is more diverse: pages-css , wix-image and wix-iframe come from the Wix website

builder. router-outlet originates in Angular. And ss3-loader seems to be related to

Smart Slider.

Obsolete elements

Are obsolete elements still a thing? Given that not-validating is still a thing, yes.

Figure 3.12. Most used custom elements not starting with rs- .

Custom element Desktop Mobile

pages-css 1.1% 2.0%

wix-image 1.1% 2.0%

router-outlet 0.7% 0.5%

wix-iframe 0.4% 0.7%

ss3-loader 0.5% 0.5%

Figure 3.13. Obsolete elements.

Part I Chapter 3 : Markup

2022 Web Almanac by HTTP Archive 123

https://almanac.httparchive.org/static/images/2022/markup/obsolete-elements.png
https://almanac.httparchive.org/static/images/2022/markup/obsolete-elements.png

On 6.1% of pages, you still find center elements (hi Google homepage86), and on 5.4% of

pages, you find font elements. Use of both elements went down (down 0.5% in both cases),

fortunately, while marquee , nobr , and big didn’t witness significant changes.

center and font make for the lion’s share (81.2%) of all obsolete elements, per our analysis:

Attributes

If elements are the bread of HTML, then attributes are the butter. What can we learn here?

Top attributes

The most popular attribute, by far, was and still is class :

Figure 3.14. Obsolete elements relative use.

86. https://www.google.com/

Part I Chapter 3 : Markup

124 2022 Web Almanac by HTTP Archive

https://www.google.com/
https://almanac.httparchive.org/static/images/2022/markup/obsolete-elements-relative-use.png
https://almanac.httparchive.org/static/images/2022/markup/obsolete-elements-relative-use.png

This order isn’t any different from what we’ve seen last year, but there are some changes:

• class (▼0.3%), href (▼0.9%), style (▼0.6%), id (▼0.2%), type (▼0.1%),

title (▼0.3%), and value (▼0.5%) are all used a little less than before.

• src (▲0.3%) and alt (▲0.1%) are used more than before—tentatively good news

for accessibility!

• rel usage hasn’t changed significantly.

Are there attributes we find on (nearly) every document? Yes:

Figure 3.15. Attribute usage.

Part I Chapter 3 : Markup

2022 Web Almanac by HTTP Archive 125

https://almanac.httparchive.org/static/images/2022/markup/attribute-usage.png
https://almanac.httparchive.org/static/images/2022/markup/attribute-usage.png

href , src , content (metadata), and name (metadata, form identifiers) are present on

nearly every document in our sample.

data-* attributes

For data-* attributes—which allow authors to embed their own custom metadata—we also

pulled new information.

This changed only little compared to last year’s data-* attributes stats. Here are some

changes to call out:

• data-id is still the most popular data-* attribute, with a 0.7% increase

compared to 2021.

Figure 3.16. Attribute usage by page.

Part I Chapter 3 : Markup

126 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/markup/attribute-usage.png
https://almanac.httparchive.org/static/images/2022/markup/attribute-usage.png
https://html.spec.whatwg.org/multipage/dom.html#embedding-custom-non-visible-data-with-the-data-*-attributes
https://html.spec.whatwg.org/multipage/dom.html#embedding-custom-non-visible-data-with-the-data-*-attributes
https://almanac.httparchive.org/en/2021/markup#data--attributes
https://almanac.httparchive.org/en/2021/markup#data--attributes

• data-element_type , though its position stayed the same, gained 0.7% as well.

• data-testid ranked #6 before, gained 0.3%, and jumped to #4.

• data-widget_type ranked #8, gained 0.4% popularity, and also gained two spots,

taking #6 in 2022.

data-element_type and data-widget_type relate to Elementor87, while data-testid is

coming from Testing Library88.

Let’s have a look at how often we find data-* attributes on our pages:

Figure 3.17. Data attribute popularity.

87. https://developers.elementor.com/
88. https://testing-library.com/

Part I Chapter 3 : Markup

2022 Web Almanac by HTTP Archive 127

https://developers.elementor.com/
https://testing-library.com/
https://almanac.httparchive.org/static/images/2022/markup/data-attribute-popularity.png
https://almanac.httparchive.org/static/images/2022/markup/data-attribute-popularity.png

Their popularity is high! Per the chart above close to every fourth document uses data-*
attributes. But the overall data show that 88% of documents use at least one data-*
attribute. That’s quite some adoption.

Social markup

Last year’s edition introduced a section on social markup89, special markup which makes it easier

for social platforms to identify and display the respective metadata. Here’s the 2022 update:

Do you need all of this metadata? That depends on your requirements. But if these

requirements are about showing title, description, and image, you don’t seem to need nearly as

Figure 3.18. Social meta nodes usage.

89. https://almanac.httparchive.org/en/2021/markup#social-markup

Part I Chapter 3 : Markup

128 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/en/2021/markup#social-markup
https://almanac.httparchive.org/static/images/2022/markup/social-meta-nodes-usage.png
https://almanac.httparchive.org/static/images/2022/markup/social-meta-nodes-usage.png

much. You may be able to do with twitter:card , og:title , og:description (hooked

up to standard description metadata), and og:image . The author and many others have

described options for minimal social markup90.

Conclusion

This was a glance at HTML in 2022.

The conclusion is brief: Going from year to year, it’s hard to say what important trends were

started or reversed. Document size seems to keep growing—at least from 2020 to 2021 to

2022. The number of elements per page goes up every year too. There may be slightly more

alt attributes now, but that’s relative to itself and we can’t tell whether more images now do

have an appropriate alt attribute set—nor whether its text is really meaningful91.

But with all of this, the Web Almanac will help. We’re going to look at HTML again—next year,

the year after next, and the year after that. And we’ll go into more detail again and we’ll look

back at more years.

What perhaps we’ll also be able to do is to look at conformance too. Not everyone may care

about this at this time in our field. But we’re all professionals, and it seems at least relevant to

know whether overall, we produce work that corresponds to the underlying standard(s)92. After

all, this shouldn’t be a chapter about fantasy HTML—it should be one about HTML that actually

works. It’s one of the most important web standards.

Author

Jens Oliver Meiert

@j9t j9t https://meiert.com/en/

Jens Oliver Meiert is an engineering lead and author (The Web Development

Glossary93, Upgrade Your HTML94), who works as an engineering manager at

LivePerson95. He specializes in HTML and CSS minimization and optimization. Jens

regularly writes about the craft of web development on his website, meiert.com96.

90. https://meiert.com/en/blog/minimal-social-markup/
91. https://html.spec.whatwg.org/multipage/images.html#alt
92. https://html.spec.whatwg.org/multipage/
93. https://leanpub.com/web-development-glossary
94. https://www.amazon.com/dp/B094W54R2N/
95. https://www.liveperson.com/
96. https://meiert.com/en/

Part I Chapter 3 : Markup

2022 Web Almanac by HTTP Archive 129

https://meiert.com/en/blog/minimal-social-markup/
https://html.spec.whatwg.org/multipage/images.html#alt
https://html.spec.whatwg.org/multipage/
https://twitter.com/j9t
https://github.com/j9t
https://meiert.com/en/
https://leanpub.com/web-development-glossary
https://leanpub.com/web-development-glossary
https://www.amazon.com/dp/B094W54R2N/
https://www.liveperson.com/
https://meiert.com/en/

130 2022 Web Almanac by HTTP Archive

Part I Chapter 4

Structured Data

Written by Andrea Volpini and Allen ONeill
Reviewed by Rob Teitelman and Jono Alderson
Analyzed by Rick Viscomi
Edited by Jasmine Drudge-Willson

Introduction

This is the second year that the Web Almanac has included a chapter on structured data. Last

year’s content gave a solid grounding97 in the concept of structured data, outlining the reason it

exists, the most frequently used types, and how it benefits organizations. This year we

compared data gathered in 2022 with the previous data from last year, so were able to monitor

trends that occurred within that period.

Despite many advances in machine learning and in particular the field of “natural language

progressing”, data still needs to be presented in a machine-readable format. Structured data

assists in information discoverability in web search, data linkage and archival purposes. By

implementing structured data on websites, engineers and web content creators facilitate:

• making website data more widely available for automated discovery and linking

97. https://almanac.httparchive.org/en/2021/structured-data#key-concepts

Part I Chapter 4 : Structured Data

2022 Web Almanac by HTTP Archive 131

https://almanac.httparchive.org/en/2021/structured-data#key-concepts

• the open availability of data for public research

• ensuring the quality of the organization’s data is maintained when the data leaves

its origin

Organizations of all sizes and types want their content to be discovered on the web. Search

engines such as Google and Bing emphasize data discoverability by promoting the use of

structured data. From an SEO point of view, it is advantageous to present data in an easy to find

and parse manner. Some of these advantages will be discussed in the use cases and key

concepts sections within this chapter.

Last year’s introduction98 pointed out that “when machines can reliably extract structured data,

at scale, we enable new and smarter types of software, systems, services and businesses”. This

year’s chapter includes sections that explore recently published research on structured data,

open source frameworks and tools that assist the generation of high-quality structured data.

This year we provide the first year over year comparison of metrics such as the presence of

different structured data types as well as the growth of those structured data types, and

examines the evolving benefits of using structured data. Having a baseline of data from 2021

allows us to gain insights into how the use of structured data has changed over the intervening

period and observe interesting trends, for example the growth of TikTok in the period.

Data caveats

Structured data can appear in many forms, and may be more visible in certain domains, and

their corresponding websites, over others. For example, compare a news website with an

ecommerce website. In general, a news site shows the most important breaking news on its

home page, therefore the structured data relating to the news articles may be present on the

main website landing page attached as data-snippets to the individual article headlines. In

comparison, structured data in ecommerce pertains to individual products and, as such, is

mostly present within a website’s product catalog itself, and in many ways, “hidden” from a high

level search of the main navigation and promotional parts of the website. This is the key caveat

that we need to be aware of in relation to the structured data chapter and report.

Due to the fact that the technology used to harvest data from websites only scratches the

surface of sites (ie: the home pages), and does not go into depth on a full crawl of the site, we

are unable to get a full picture of the extent of structured data usage in sites where such data is

by necessity, contained deep within the site. In future years we hope to take a sample of sites

across different domains and go deep to rectify this issue and give additional insight into

98. https://almanac.httparchive.org/en/2021/structured-data#introduction

Part I Chapter 4 : Structured Data

132 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/en/2021/structured-data#introduction

domain-specific use of structured data.

The high level caveats from last year’s chapter still remain, namely:

• Auto-generated structured data: This is where technologies such as content

creation systems auto-generate structured data snippets based on templates. In

this case any template-based error will inevitably populate across all data

presented.

• Data format overlaps: Structured data can be presented in a number of different

ways, including JSON-LD, RDF etc. This means that we may see overlap, for

example, between a Facebook meta tag and the same tag presented in a different

manner in the RDFa section. As analysis is tightly based on queries created for the

baseline in 2021, we expect the impact of cleaning/normalization and data

flattening should carry through for like analysis.

Key concepts

As structured data is a rich and complex area, it is important to explore and explain some key

concepts of the topic before diving head-first into further analysis.

Linked data

By adding structured data to web pages, and providing URI links to the entities the pages

contain/reference, we create linked data. This structured data is then interlinked, making it

more useful through semantic queries.

Adding linked data to describe web page content enables machines to treat web pages as

databases. At a large scale, this contributes to the semantic web99. The semantic web links data

together through The Resource Description Framework (RDF). This is a framework for

representing information on the web using URIs to define entities and the relationships

between them.

A relationship between entities in the RDF data model is known as a semantic triple. With a

semantic triple100 (or just triple), we can codify a statement about data. These expressions follow

99. https://en.wikipedia.org/wiki/Semantic_Web
100. https://en.wikipedia.org/wiki/Semantic_triple

Part I Chapter 4 : Structured Data

2022 Web Almanac by HTTP Archive 133

https://en.wikipedia.org/wiki/Linked_data
https://en.wikipedia.org/wiki/Semantic_Web
https://en.wikipedia.org/wiki/Semantic_triple

the form of subject–predicate–object (e.g., “Allen knows John”).

To be able to retrieve and manipulate RDF data, we can use an RDF Query Language such as

SPARQL101, the standard RDF query language.

As will be discussed later, this semantic web creates many opportunities for business and

technology.

Open data

Linked data may also be open data, described as Linked Open Data. Open data, as the name

implies, is data that is openly accessible to anyone for any purpose. This data is licensed under

an open license.

Open data is the first of the 5 stars of open data102, a deployment scheme suggested by Tim

Berners-Lee. According to the open data handbook103, to score the maximum five stars, data

must (1) Be available on the Web under an open license, (2) Be in the form of structured data,

(3) Be in a non-proprietary file format, (4) Use URIs as its identifiers, (5) Include links to other

data sources (see data linking).

While structured data is the second star in the 5 star open data plan, linked data should fulfill

requirements for all 5 stars of open data.

Semantic search engines, rich results and beyond

A semantic search engine is one which performs semantic search104. This is different from lexical

search where search engines look for exact or close matches to words or strings of text.

Semantic search aims to understand the user’s intent and the context of the search terms in

order to improve the accuracy of search. An example would be a structured data entity of “local

business: hairdresser” versus “TG Locks n Lashes”; the latter is a business name, and while it

tells the creative name of the hair salon as a key-word, it does little to help the search engine to

understand what the business does. By using structured data, the website can better help the

search engine understand the context of its information, and thus enable the engine to offer

better search results in the context of the query asked by the search user. Google and Bing are

excellent examples of semantic search engines.

Google uses semantic search technologies to serve relevant information from the Google

Knowledge Graph105 which is a knowledge base used to serve search results in an infobox. This

101. https://www.w3.org/TR/sparql11-query/
102. https://5stardata.info/en/
103. https://opendatahandbook.org/
104. https://en.wikipedia.org/wiki/Semantic_search
105. https://blog.google/products/search/introducing-knowledge-graph-things-not/

Part I Chapter 4 : Structured Data

134 2022 Web Almanac by HTTP Archive

https://www.w3.org/TR/sparql11-query/
https://en.wikipedia.org/wiki/Open_data
https://5stardata.info/en/
https://opendatahandbook.org/
https://en.wikipedia.org/wiki/Semantic_search
https://blog.google/products/search/introducing-knowledge-graph-things-not/
https://blog.google/products/search/introducing-knowledge-graph-things-not/

infobox is known as a knowledge panel106, and can be seen in many results. This knowledge box

can be enabled or enhanced by structured data.

Another search result that is made possible by structured data combined with linked data is the

rich result107. These results display richer features in search results, and come in the form of

Events, FAQs, How-tos, Job listings and many more108. Implementing structured data to make

web pages eligible for rich results could increase clickthrough rate109. The image below

illustrates how structured data with business details for a Hair Studio allows the search engine

to easily extract and display information about the business, highlighting it and optimizing SEO.

Figure 4.1. Structured data surfaced in a web search.

106. https://support.google.com/knowledgepanel/answer/9163198
107. https://developers.google.com/search/docs/advanced/structured-data/search-gallery
108. https://developers.google.com/search/docs/advanced/structured-data/search-gallery
109. https://www.searchenginejournal.com/how-important-is-structured-data/257775/

Part I Chapter 4 : Structured Data

2022 Web Almanac by HTTP Archive 135

https://support.google.com/knowledgepanel/answer/9163198
https://developers.google.com/search/docs/advanced/structured-data/search-gallery
https://developers.google.com/search/docs/advanced/structured-data/search-gallery
https://www.searchenginejournal.com/how-important-is-structured-data/257775/
https://almanac.httparchive.org/static/images/2022/structured-data/structured-data-surfaced-in-a-web-search.png
https://almanac.httparchive.org/static/images/2022/structured-data/structured-data-surfaced-in-a-web-search.png

Beyond knowledge panels and web page rich results, structured data can also enable answers

to factual queries110 in search. A factual query search can get multiple signals from different

structured data sources and support more precise results. Here, structured data

implementation, and the technologies that allow for it, provide faster and more reliable access

to information in order to improve user experience.

The combination of SEO importance, higher click-through rates, improved user experience and

machine-readable data being accessible for analysis illustrate significant benefits to

implementing structured data. Understanding these key concepts will help both content

providers and technical personnel who construct sites how to implement better navigation and

understand the function of automated data consumption from web pages.

Structured Data research

For this year’s chapter we were interested in investigating what—if any—academic research has

been carried out in the area of structured data, or if structured data was documented as being

used to assist in development of state-of-the-art technologies and services.

To look for published research, we used academic search tools such as Google Scholar111,

ConnectedPapers112 and University-based citation databases. We not only looked for recent

publications, but also older research that continues to be cited.

The results of our search showed that there is not a lot of highly cited recent work conducted

into generating, managing and building structured web data. However, research on the

application of structured web data (“The Semantic Web”113) like knowledge graphs,

recommendation engines, information retrieval, chatbots and explainable AI has been

conducted in the past twelve months and continues to grow.

Web structured data shares a synergetic relationship with the field of machine learning by

providing consistent data with appropriate Uniform Reference Indicator (URI) vocabulary

which can be used to generate machine readable labels114. Our searches and background reading

have shown that structured data has considerably reduced the work and time input to generate

high quality web data for training machine learning algorithms.

On a practical level, we highlight three areas that structured data has improved:

• Knowledge graphs

110. https://gofishdigital.com/blog/answering-questions-structured-data/
111. https://scholar.google.com/
112. https://www.connectedpapers.com/
113. https://en.wikipedia.org/wiki/Semantic_Web
114. https://developers.google.com/machine-learning/crash-course/framing/ml-terminology

Part I Chapter 4 : Structured Data

136 2022 Web Almanac by HTTP Archive

https://gofishdigital.com/blog/answering-questions-structured-data/
https://scholar.google.com/
https://www.connectedpapers.com/
https://en.wikipedia.org/wiki/Semantic_Web
https://developers.google.com/machine-learning/crash-course/framing/ml-terminology

• Question Answering over Knowledge Graphs

• Explainable AI

Knowledge graphs

Structured web data provides fixed vocabularies between entities and objects as a domain-

specific language, which are generally stored in a RDF format. Knowledge graphs using RDF

have proven to be great tools for querying relationships between entities. As an example,

Wikidated 1.0 is an evolving knowledge graph which uses web structured data to store

Wikipedia’s revision history. Its corresponding paper115 talks through the process of aggregating

revisions to a page as a set of additions and deletions of the RDF tuple. The authors have open

sourced their method to convert wikipedia dumps into knowledge graphs. Applied research

carried out by doordash engineering demonstrates that using knowledge graphs can

dramatically improve search performance116.

Question Answering over Knowledge Graphs

Question answering systems enable end users to find answers to their questions. When built

upon a knowledge graph, a question answering system makes it possible to access the rich and

structured data stored in knowledge graphs. Query languages such as SPARQL117 are often used

to query the information stored as RDF triples in knowledge graphs.

However, writing SPARQL queries can be tedious and challenging for end-users. Therefore,

natural language questions (NLQs) are an attractive solution that allows overcoming the

numerous complexities of querying knowledge graphs. This work proposes a KG-based

question answering system (KGQAS) that consists of two main phases: 1) an offline phase, and

2) a semantic parsing phase.

While the offline phase aims to convert natural language questions into formal query patterns

in a semi-automated way, the semantic parsing phase leverages machine learning to build a

prediction model. The model is trained on the output of the first phase. It enables predicting the

most appropriate query pattern for a given question. For evaluation, SalzburgerLand KG is used

as a practical use case. It’s a real-world knowledge graph that is built using the schema markup

vocabulary and its primary focus is structured data automation that describes touristic entities

of the region of Salzburg, Austria.

115. https://arxiv.org/abs/2112.05003
116. https://doordash.engineering/2020/12/15/understanding-search-intent-with-better-recall/
117. https://en.wikipedia.org/wiki/SPARQL

Part I Chapter 4 : Structured Data

2022 Web Almanac by HTTP Archive 137

https://arxiv.org/abs/2112.05003
https://doordash.engineering/2020/12/15/understanding-search-intent-with-better-recall/
https://doordash.engineering/2020/12/15/understanding-search-intent-with-better-recall/
https://en.wikipedia.org/wiki/SPARQL

Explainable AI

Explainable AI focuses on explaining decisions of an AI model. Most AI models are not openly

available to the public, and so do not provide rationale for the decisions they make. Owing to

knowledge graphs built on top of semantic web; harder to find relationships between entities

can be found. These are then used as ’ground truth’ to trace back the results of the model. The

most common approach is to map network inputs or neurons to classes of an ontology or

entities of a web structured data.

References:

• Knowledge graphs: Wikidated 1.0: An Evolving Knowledge Graph Dataset of

Wikidata’s Revision History118

• Question Answering Over Knowledge Graphs: Question Answering Over

Knowledge Graphs: A Case Study in Tourism119

• Explainable AI using structured data: Semantic Web Technologies for Explainable

Machine Learning Models: A Literature Review120

Open source use of Structured Data

Three projects of note that rely heavily on the use of structured data are the following:

• Open Source Metadata Framework (OMF) - The OMF aims to collect data about

Open Source documentation / metadata which are typically stored in a structured

data format that will be used to describe the documentation. The idea is that the

OMF will act as a sophisticated card catalog type of system for the numerous Open

Source documentation projects that exist.

• DBpedia is a set of datasets, tools and services related to structured web data. It

contains more than 228 million freely-available entities to date. The main DBpedia

Knowledge Graph encompasses clean data from Wikipedia. DBPedia is available in

all supported Wikipedia languages and averages over 600k file downloads per year.

Some open source tools that are built on top of DBpedia provide data access,

versioning, quality control, ontology visualization and linking infrastructures.

118. https://arxiv.org/abs/2112.05003
119. https://ieeexplore.ieee.org/abstract/document/9810255
120. https://www.researchgate.net/profile/Matthias-Pfaff/publication/

336578867_Semantic_Web_Technologies_for_Explainable_Machine_Learning_Models_A_Literature_Review/links/5daafb99a6fdccc99d91d120/Semantic-Web-
Technologies-for-Explainable-Machine-Learning-Models-A-Literature-Review.pdf

Part I Chapter 4 : Structured Data

138 2022 Web Almanac by HTTP Archive

https://arxiv.org/abs/2112.05003
https://arxiv.org/abs/2112.05003
https://ieeexplore.ieee.org/abstract/document/9810255
https://ieeexplore.ieee.org/abstract/document/9810255
https://www.researchgate.net/profile/Matthias-Pfaff/publication/336578867_Semantic_Web_Technologies_for_Explainable_Machine_Learning_Models_A_Literature_Review/links/5daafb99a6fdccc99d91d120/Semantic-Web-Technologies-for-Explainable-Machine-Learning-Models-A-Literature-Review.pdf
https://www.researchgate.net/profile/Matthias-Pfaff/publication/336578867_Semantic_Web_Technologies_for_Explainable_Machine_Learning_Models_A_Literature_Review/links/5daafb99a6fdccc99d91d120/Semantic-Web-Technologies-for-Explainable-Machine-Learning-Models-A-Literature-Review.pdf
https://www.ibiblio.org/osrt/omf/
https://www.dbpedia.org/

• Wikidata stores structured data from Wikimedia projects like Wikipedia. It is a

document-oriented database, which focuses on storing structured web data.

Use cases

The implementation of structured data is widely beneficial in numerous areas, some of which

will be focused on in this section. It is important to note that many of these areas are

overlapping, such is the nature of linked and structured data.

Data linking

Having structured and linked data, while using identifiers to designate places, events, people,

concepts, etc, the data can be cited by other data sources and therefore make their metadata

descriptions more accessible. This data is then more shareable and reusable.

With data linking, we collect information from different sources to create richer and more

useful data. This is possible thanks to structured data, whose global, unique identifiers allow

machines to read and understand the relationship between different types of data. This has the

use of creating a more connected web of relationships.

Search Engine Optimization & discoverability

Search engine optimization (SEO121) is the area focusing on building the content of a web page so

that it has better results from search engines. Naturally, this is highly important for

discoverability as a successful implementation of SEO may allow for a page to appear higher on

the search engine results page (SERP122). The SERP is where the titles, URLs, and meta

descriptions are displayed from a search query.

By adding structured data to web pages, we can optimize a web page for search engines, as well

as have extra content visible from the SERP. This extra content can come in many forms, some

of which has been discussed previously, namely Knowledge Panels, Rich Snippets and Related

Questions.

Having this added discoverability, enabled by structured data, is essential for increasing traffic

to a web page from search engines. It follows that businesses and ecommerce pages would find

great value in these technologies, which will be discussed in the following section.

121. https://www.webopedia.com/definitions/seo/#How_does_SEO_work
122. https://www.webopedia.com/definitions/serp/

Part I Chapter 4 : Structured Data

2022 Web Almanac by HTTP Archive 139

https://www.wikidata.org/
https://www.webopedia.com/definitions/seo/#How_does_SEO_work
https://www.webopedia.com/definitions/serp/

Ecommerce & business

The implementation of structured data for ecommerce web pages is incredibly beneficial for

those involved with the business. There are numerous structured data types which are widely

used for these businesses for SEO.

LocalBusiness123 is a structured data type which may return a Google knowledge panel with

details entered in the structured data type during relevant search queries (e.g. “popular

restaurants in Dublin”). This type also may have business hours, different departments within a

business, reviews for the business, which could all be returned from a maps app search query as

well.

Product124, the structured data type, works similarly to LocalBusiness in that it allows for a

search query to return rich results. These results can include price, availability, reviews, ratings,

and even images in the search results. These added elements can make the product far more

likely to receive attention from the search. Product attributes can help link products together

and better respond to search queries, increasing discoverability.

These are just a couple of examples of use cases for structured data in ecommerce, but there

are many more structured data types125 that an ecommerce page can benefit from implementing.

A year in review

Structured data is underpinned by formats and standards that describe a meta-level schema

into which publishers can fit and present data in a pre-defined manner. RDFa, OpenGraph,

JSON-LD and other established formats have been used in the analysis for this chapter.

123. https://developers.google.com/search/docs/advanced/structured-data/local-business
124. https://developers.google.com/search/docs/advanced/structured-data/product
125. https://developers.google.com/search/docs/advanced/ecommerce/include-structured-data-relevant-to-ecommerce

Part I Chapter 4 : Structured Data

140 2022 Web Almanac by HTTP Archive

https://developers.google.com/search/docs/advanced/structured-data/local-business
https://developers.google.com/search/docs/advanced/structured-data/product
https://developers.google.com/search/docs/advanced/ecommerce/include-structured-data-relevant-to-ecommerce

RDFa and Open Graph remain in the majority with 62% and 57% of mobile pages, respectively.

Structured data types are seen consistently across mobile and desktop pages, with

Microformats and microformats2 differing the most from other structured data types we

examined in this chapter. Microformats are 86% as prominent on mobile pages, whereas

microformats2 are 171% as prominent on mobile pages. These two structured data types make

up a small percentage of those found in our set.

Figure 4.2. Structured data types

Part I Chapter 4 : Structured Data

2022 Web Almanac by HTTP Archive 141

https://almanac.httparchive.org/static/images/2022/structured-data/structured-data-types.png
https://almanac.httparchive.org/static/images/2022/structured-data/structured-data-types.png

A general increase in these widely-used structured data types can be seen, including Twitter

meta tags (which has increased from 37% to 40%) and JSON-LD (which has increased coverage

from 34% overall in 2021 to 37% overall in 2022). There is a slight decrease in usage for some

of the less prevalent structured data types such as Microdata, Facebook meta tags, Dublin Core

and Microformats. Desktop movements were very similar.

The below table lists the major changes to structured data formats in the last year. Only types

with changes have been listed.

Figure 4.3. Structured data usage by year on mobile

Part I Chapter 4 : Structured Data

142 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/structured-data/structured-data-usage-by-year.png
https://almanac.httparchive.org/static/images/2022/structured-data/structured-data-usage-by-year.png

Overall there has been little change in the definitions of the major data types as the table

outlines, however some formats have been advanced in specific domains.

Let’s delve a little deeper into each type.

Figure 4.4. Changes between 2021 and 2022 in data type formats.

Data type Change

RDFa

Although there are no changes in the base format of RDFa, version 3 of the Data Catalog

Vocabulary (DCAT) contained a significant update. DCAT is an “RDF vocabulary designed to

facilitate interoperability between data catalogs published on the Web”. This is significant due to

the increased availability of open datasets on the web. Being able to describe the entire contents

of a dataset greatly increases the discoverability, and thus usefulness, of a public dataset and

makes federated search and distribution more likely.

References:

• DCAT: https://www.w3.org/TR/2022/WD-vocab-dcat-3-20220510

• Google dataset search engine126

• Google dataset structured data format guide127

JSON-LD

Updates and additions in the past year were minor. Of these, most were related to maintenance

and minor expansion of context, for example “adding OnlineBusiness as a subtype of

Organization and OnlineStore as a subtype of OnlineBusiness”.

References:

• https://schema.org/docs/releases.html

126. https://datasetsearch.research.google.com/
127. https://developers.google.com/search/docs/advanced/structured-data/dataset

Part I Chapter 4 : Structured Data

2022 Web Almanac by HTTP Archive 143

https://www.w3.org/TR/2022/WD-vocab-dcat-3-20220510
https://datasetsearch.research.google.com/
https://developers.google.com/search/docs/advanced/structured-data/dataset
https://schema.org/docs/releases.html

RDFa

When evaluating the types of RDFa, foaf:image remains present on more pages than any

other type, though it has shown a decrease in the percent of pages in our set since 2021. This

applies to the next two types, foaf:document and sioc:item , with small decreases in

usage. Many of the other types show a slight increase in usage, as RDFa has seen as a whole.

Figure 4.5. RDFa usage by year on mobile

Part I Chapter 4 : Structured Data

144 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/structured-data/rdfa-usage-by-year-mobile.png
https://almanac.httparchive.org/static/images/2022/structured-data/rdfa-usage-by-year-mobile.png

RDFa remains more prominent on desktop with foaf:image appearing on 1% of desktop

pages, compared to 0.81% on mobile pages. Other RDFa types saw a slight increase in

appearance on desktop pages over mobile, with the exception of og:website reaching ahead

with 0.08% on mobile pages and 0.07% on desktop pages.

Figure 4.6. RDFa usage by device

Part I Chapter 4 : Structured Data

2022 Web Almanac by HTTP Archive 145

https://almanac.httparchive.org/static/images/2022/structured-data/rdfa-usage-by-device.png
https://almanac.httparchive.org/static/images/2022/structured-data/rdfa-usage-by-device.png

Dublin Core

Dublin Core attribute type usage remains very similar across the most prominent attribute

types. A notable exception is dcterms.identifier , going from 0.11% in 2021 to 0.18% in

2022 for mobile pages. Though small in percentage, this totals to a usage count of nearly

15,000 in our set. This increase was also seen for desktop pages, though not as substantial,

going from 0.14% in 2021 to 0.18% in 2022.

Figure 4.7. Dublin Core usage by year (mobile)

Part I Chapter 4 : Structured Data

146 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/structured-data/dublin-core-usage-by-year-mobile.png
https://almanac.httparchive.org/static/images/2022/structured-data/dublin-core-usage-by-year-mobile.png

Other than that, Dublin Core types are similar between mobile and desktop pages, sharing the

same slight increase in appearances compared to the previous year.

Figure 4.8. Dublin Core usage by device

Part I Chapter 4 : Structured Data

2022 Web Almanac by HTTP Archive 147

https://almanac.httparchive.org/static/images/2022/structured-data/dublin-core-usage-by-device.png
https://almanac.httparchive.org/static/images/2022/structured-data/dublin-core-usage-by-device.png

Open Graph

Open Graph tags have seen a widespread increase in use. The most common of these tags is

og:title appearing in over half of all pages in our set, joined by og:url and og:type .

Most of these increases are small, with og:image:type as an exception which more than

tripled on mobile pages since 2021. This is matched by desktop, going from 1.6% to 5.4% over

the course of the year.

Figure 4.9. Open Graph usage by year (mobile)

Part I Chapter 4 : Structured Data

148 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/structured-data/open-graph-usage-by-year-mobile.png
https://almanac.httparchive.org/static/images/2022/structured-data/open-graph-usage-by-year-mobile.png

We have seen an increase in use for each Open Graph type in the top 10 for both mobile and

desktop, resulting in Open Graph’s relative growth of 1.5% since 2021.

Figure 4.10. Open Graph usage by device

Part I Chapter 4 : Structured Data

2022 Web Almanac by HTTP Archive 149

https://almanac.httparchive.org/static/images/2022/structured-data/open-graph-usage-by-device.png
https://almanac.httparchive.org/static/images/2022/structured-data/open-graph-usage-by-device.png

Twitter

Twitter meta tags once again follow the pattern of a general increase in usage, more specifically

in the common tags of twitter:card , twitter:title , twitter:description and

twitter:image . A notable increase can be seen for twitter:label1 and

twitter:data1 , both at 7% in 2021 to 10% in 2022 for mobile pages.

Figure 4.11. Twitter meta tag usage by year (mobile)

Part I Chapter 4 : Structured Data

150 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/structured-data/twitter-meta-tag-usage-by-year-mobile.png
https://almanac.httparchive.org/static/images/2022/structured-data/twitter-meta-tag-usage-by-year-mobile.png

Twitter meta tags such as twitter:site and twitter:image have a larger presence on

desktop sites, though the majority of these meta tags share the same prevalence between

mobile and desktop, as well as year-to-year. Some of the less common tags saw a slight

decrease in use this year, though Twitter meta tag usage maintains an overall increase from last

year.

Figure 4.12. Twitter meta tag usage by device

Part I Chapter 4 : Structured Data

2022 Web Almanac by HTTP Archive 151

https://almanac.httparchive.org/static/images/2022/structured-data/twitter-meta-tag-usage-by-device.png
https://almanac.httparchive.org/static/images/2022/structured-data/twitter-meta-tag-usage-by-device.png

Facebook

Out of all of the Facebook tags here, there are only three with significant numbers of

appearances. These are the same as the top three in 2021, namely fb:app_id , fb:admins
and fb:pages at 5.8%, 2.6% and 0.8% on mobile, all a slight decrease from last year.

Figure 4.13. Facebook meta tag usage by year (mobile)

Part I Chapter 4 : Structured Data

152 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/structured-data/facebook-meta-tag-usage-by-year-mobile.png
https://almanac.httparchive.org/static/images/2022/structured-data/facebook-meta-tag-usage-by-year-mobile.png

This is true for desktop pages too, with the exception of fb:pages at a slight increase from

0.90% in 2021 to 0.92% in 2022. The meta tag fb:pages_id sees a slight increase on mobile

and desktop pages alike, but overall facebook meta tag usage has seen a decline for both mobile

and desktop pages since last year.

Figure 4.14. Facebook meta tag usage by device

Part I Chapter 4 : Structured Data

2022 Web Almanac by HTTP Archive 153

https://almanac.httparchive.org/static/images/2022/structured-data/facebook-meta-tag-usage-by-device.png
https://almanac.httparchive.org/static/images/2022/structured-data/facebook-meta-tag-usage-by-device.png

Microformats and microformats2

Microformats have remained very similar in usage numbers since 2021, with adr (appearing

on 0.47% of pages in our set) still being the most common on the list.

Figure 4.15. Microformats usage by year (mobile)

Figure 4.16. Microformats usage by device

Part I Chapter 4 : Structured Data

154 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/structured-data/microformats-usage-by-year-mobile.png
https://almanac.httparchive.org/static/images/2022/structured-data/microformats-usage-by-year-mobile.png
https://almanac.httparchive.org/static/images/2022/structured-data/microformats-usage-by-device.png
https://almanac.httparchive.org/static/images/2022/structured-data/microformats-usage-by-device.png

Both mobile and desktop share a mix of increased and decreased usage between microformat

types, though both averaging out to less than last year’s numbers. Some types which factor into

this decrease are hReview (going from 0.06% to 0.05% on mobile pages and 0.06% to 0.04%

on desktop pages) and hReview-aggregate (going from 0.06% to 0.04% on both mobile and

desktop pages).

Meanwhile, microformats2 attributes have skyrocketed since 2021. The properties of h-
entry , h-card and h-feed have shown huge increases in our set of pages, which account

for the fact that microformats2 attributes have almost tripled in our set since the previous year.

Figure 4.17. Microformats2 usage by year

Part I Chapter 4 : Structured Data

2022 Web Almanac by HTTP Archive 155

https://almanac.httparchive.org/static/images/2022/structured-data/microformats2-usage-by-year-mobile.png
https://almanac.httparchive.org/static/images/2022/structured-data/microformats2-usage-by-year-mobile.png

This growth is seen more drastically on mobile pages, though desktop pages do follow the same

pattern. Other than that, h-adr remains the exact same across both years and both platforms

at 0.02% of pages.

Figure 4.18. Microformats2 usage by device

Part I Chapter 4 : Structured Data

156 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/structured-data/microformats2-usage-by-device.png
https://almanac.httparchive.org/static/images/2022/structured-data/microformats2-usage-by-device.png

Microdata

Most of the properties for Microdata have not seen much change, with a slight increase in some

of the more common properties such as webpage , sitenavigationelement and

wpheader appearing in 7.9%, 6.1% and 5.3% of mobile pages respectively.

Figure 4.19. Microdata usage by year (mobile)

Part I Chapter 4 : Structured Data

2022 Web Almanac by HTTP Archive 157

https://almanac.httparchive.org/static/images/2022/structured-data/microdata-usage-by-year-mobile.png
https://almanac.httparchive.org/static/images/2022/structured-data/microdata-usage-by-year-mobile.png

These increases are common for desktop as well, with slight decreases elsewhere such as

wpsidebar (going from 1.4% to 1.2% on mobile pages and going from 1.3% to 1.1% on

desktop pages), resulting in minimum change over the last year for both mobile and desktop

pages as a whole.

Figure 4.20. Microdata usage by device

Part I Chapter 4 : Structured Data

158 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/structured-data/microdata-usage-by-device.png
https://almanac.httparchive.org/static/images/2022/structured-data/microdata-usage-by-device.png

JSON-LD

JSON-LD types continue to be mostly similar with a few notable increases over the previous

year. Namely, these are LocalBusiness (which has increased to 2.8% of pages in our set) and

Restaurant (which has increased to 0.3% of pages in our set).

Figure 4.21. JSON-LD usage by year (mobile)

Part I Chapter 4 : Structured Data

2022 Web Almanac by HTTP Archive 159

https://almanac.httparchive.org/static/images/2022/structured-data/json-ld-usage-by-year-mobile.png
https://almanac.httparchive.org/static/images/2022/structured-data/json-ld-usage-by-year-mobile.png

These increases are enough to make JSON-LD types have the 2nd biggest positive change since

2021, going from appearing on 33.5% to 36.5% of mobile pages in our set and going from 34.1%

to 36.9% on desktop pages.

JSON-LD Relationships

When evaluating JSON-LD, we can focus on the most recurring patterns of relationships among

the different classes. More than with other syntaxes, JSON-LD expresses the value of graphs in

structured data. An Article , for example, is frequently characterized by a linked image and

the entity type Person to represent its author. Quite similarly, we would see that

BlogPosting is also connected with image but as a frequent relationship with the

Organization that serves as Publisher .

Some types are purely syntactic like BreadcrumbList that is used exclusively to connect

Figure 4.22. JSON-LD usage by device

Part I Chapter 4 : Structured Data

160 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/structured-data/json-ld-usage-by-device.png
https://almanac.httparchive.org/static/images/2022/structured-data/json-ld-usage-by-device.png

different items (itemListElement) of a site navigation’s system or a Question that is

typically linked with its answer (acceptedAnswer). Other elements deal with meanings: a

LocalBusiness typically is linked to an address and to the opening hours

(openingHoursSpecification).

With this analysis we want to share a birds-eye overview of the most common types of

relationships between entities and the subtle differences between let’s say Article and

BlogPosting .

Here below we can see the common links between the different types, based on how frequently

they occur within all structure/relationship values. Some of these structures are typically part

of larger relationship chains.

The analysis also provides an overview of the verticals behind these constructs: from news and

media to e-commerce, from local businesses to events, and so on.

Here below we can see the same data interactively with the source attribute on the left and the

target class on the right.

Figure 4.23. JSON-LD entity relationship as a Sankey diagram.

AnswerArticle

BlogPosting

BreadcrumbList

BreadcrumbList

CollectionPage

ContactPoint

EntryPoint

Event
FAQPage ImageObject
ItemList

Language

ListItem

ListItem

LocalBusiness
MenuItem

MenuItem

MenuSection
MobileApplication

Offer

Offer

OpeningHoursSpecification

Organization

Organization

Person

Person
Person,Organization

Place

Place
PostalAddress

Product

QuantitativeValue

Question

Question
Rating

ReadAction

Review

SearchAction

SearchAction

Thing

WebPage

WebPage

WebSite

WebSite

about

acceptedAnswer
address

author

brand

breadcrumb

contactPoint
hasMenuItem

image

inLanguage
inventoryLevel

isPartOf

item

itemListElement

location

logo

mainEntity

mainEntityOfPage

offers

openingHoursSpecification

potentialAction

primaryImageOfPage

publisher

reviewRating
seller

target

weight

_to_from
relationship

Part I Chapter 4 : Structured Data

2022 Web Almanac by HTTP Archive 161

https://almanac.httparchive.org/static/images/2022/structured-data/structured-data-json-ld-entities-relationships.svg
https://almanac.httparchive.org/static/images/2022/structured-data/structured-data-json-ld-entities-relationships.svg

The main limitation of this analysis is represented by the fact that we can evaluate relationship

chains at the homepage level.

Figure 4.24. Sankey Chart.

Part I Chapter 4 : Structured Data

162 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/structured-data/sankey.png
https://almanac.httparchive.org/static/images/2022/structured-data/sankey.png

SameAs

As was the case in 2021, the most common values of the sameAs property are social media

platforms. These include facebook.com (at 4.32% on mobile and 4.94% on desktop),

instagram.com (at 2.93% on mobile and 3.34% on desktop) and twitter.com (at 2.30% on mobile

and 2.86% on desktop). The former two of which have seen a slight increase on mobile from

2021, with all 3 increasing on desktop.

Figure 4.25. SameAs usage by year (mobile)

Part I Chapter 4 : Structured Data

2022 Web Almanac by HTTP Archive 163

https://almanac.httparchive.org/static/images/2022/structured-data/sameas-usage-by-year-mobile.png
https://almanac.httparchive.org/static/images/2022/structured-data/sameas-usage-by-year-mobile.png

The rest of the list includes information sources such as wikipedia.org (at 0.13% on both mobile

and desktop) and yelp.com (at 0.11% on mobile and 0.13% on desktop), both at an increase

from the previous year.

Figure 4.26. SameAs usage by device

Part I Chapter 4 : Structured Data

164 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/structured-data/sameas-usage-by-device.png
https://almanac.httparchive.org/static/images/2022/structured-data/sameas-usage-by-device.png

Further JSON-LD insights - relative changes

It is insightful to look at the SameAs entries and how they change over time. TikTok has seen a

huge increase with 2022 showing its appearance on six times as many pages relative to our set

compared to 2021. This change is equal for both desktop and mobile pages. Pinterest, and the

various domain names it has, make up for 3 of the top 5 largest growth for mobile pages in

2022. Mobile overall has seen a larger increase for SameAs entries than desktop, with Spotify

being an exception with its desktop page appearances being doubled compared to 2021.

Figure 4.27. SameAs relative change

Part I Chapter 4 : Structured Data

2022 Web Almanac by HTTP Archive 165

https://almanac.httparchive.org/static/images/2022/structured-data/sameas-relative-change.png
https://almanac.httparchive.org/static/images/2022/structured-data/sameas-relative-change.png

Looking at the domain names of the SameAs entries, and how they change over time, also may

give valuable insight. In the largest desktop page growth we see .ca , .net and .fr , with

the latter also being up there in the top for mobile page increases. As this is an average, the

amount of entries is not accounted for. In both years .com is far larger in numbers than all other

entries, but the average change is 125% for mobile pages and 117% for desktop pages. The

Canadian and French domain averages are heavily boosted by Pinterest, which—as mentioned

above—has seen widespread increases from last year. In fact, 7 out of the top 10 SameAs
domain growers have Pinterest in their entries, sometimes being their only entry.

Figure 4.28. SameAs domain average relative change

Part I Chapter 4 : Structured Data

166 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/structured-data/sameas-domain-average-relative-change.png
https://almanac.httparchive.org/static/images/2022/structured-data/sameas-domain-average-relative-change.png

For JSON-LD contexts, schema.org is by far the largest contributor, with over 6,000 times as

many appearances for desktop pages and over 3,500 times as many appearances for mobile

pages than the second largest contributor, googleapis.com. With that said, googleapis.com’s

appearances more than doubled for both desktop and mobile pages, compared to schema.org’s

more modest increase to 108% of last year’s numbers. In terms of top growers, contao.org and

rich-snippets.io take the top spots with contao.org’s desktop page increase of 819% and rich-

snippets.io’s mobile increase of 849%. Contao.org ranks 4th in total entries, while rich-

snippets.io ranks at 8th.

Conclusion

A lot has been outlined about how structured data affects the web and, by extension, our

experience. This year we also focused on comparing how the adoption of structured data has

changed over a year. We could see, for example, the general increase in some classes like

LocalBusiness (particularly for Restaurants) or FAQ and the slight decrease in usage for some of

Figure 4.29. JSON-LD contexts relative change

Part I Chapter 4 : Structured Data

2022 Web Almanac by HTTP Archive 167

https://almanac.httparchive.org/static/images/2022/structured-data/json-ld-contexts-relative-change.png
https://almanac.httparchive.org/static/images/2022/structured-data/json-ld-contexts-relative-change.png

the less relevant structured data types that come from foaf or the microdata syntax.

Although far from being a comprehensive list, we can see structured (linked) data bringing

several advantages to:

• Ecommerce pages

• Business pages

• Researchers

• Social media sites

• Users

Through SEO, increased discoverability, general data linking, and rich results drive the

adoption. Implementing semantic markup within web pages results in a more connected and

accessible web.

With more information and insight available than ever, it is essential to understand the

capabilities and limitations of specific techniques or choices when trying to increase web page

traffic. Adding fake reviews or misleading data in the hopes of improving SEO will be detected,

resulting in fewer benefits from those mentioned above and poorer discoverability and

performance from search engines.

As already seen in the previous year, while SEO remains a crucial driver for adopting structured

data, a growing landscape of use cases is emerging beyond search engines. Website owners are

adding data in diverse scenarios to make their systems interoperable, train their content

recommendation systems, and gain new insights from web pages.

Although this is only the second year for this chapter in the Web Almanac, we are excited to see

how these trends continue and change, along with the state of structured data on the web.

With all of the benefits structured data brings, we expect an increasing implementation of

these technologies.

Part I Chapter 4 : Structured Data

168 2022 Web Almanac by HTTP Archive

Authors

Andrea Volpini

@cyberandy cyberandy https://wordlift.io/blog/en/entity/andrea-volpini

Andrea Volpini is the CEO of WordLift, and is currently focusing on the semantic

web, SEO and artificial intelligence.

Allen ONeill

@DataBytesAI DataBytzAI allenoneill https://webdataworks.io/

Allen is founder and CTO for ‘The DataWorks’, delivering AI-driven web-data

solutions to top tier organizations worldwide. His core focus is designing

innovative technology solutions at scale, and his primary background is in

enterprise systems.

Part I Chapter 4 : Structured Data

2022 Web Almanac by HTTP Archive 169

https://twitter.com/cyberandy
https://github.com/cyberandy
https://wordlift.io/blog/en/entity/andrea-volpini
https://twitter.com/DataBytesAI
https://github.com/DataBytzAI
https://www.linkedin.com/in/allenoneill/
https://webdataworks.io/

170 2022 Web Almanac by HTTP Archive

Part I Chapter 5

Fonts

Written by Bram Stein
Reviewed by Alex N. Jose, José Solé, Roel Nieskens, and Chris Lilley
Analyzed by Bram Stein and Kanmi Obasa
Edited by Shaina Hantsis

Introduction

We’ve come a long way since the early days of web fonts. We went from a handful of web-safe

fonts to a typographic explosion of hundreds of thousands web fonts. The technology and ease

of use is almost unrecognizable: from elaborate “bullet-proof” font loading strategies with

several font formats to simply including a WOFF2 file.

Part I Chapter 5 : Fonts

2022 Web Almanac by HTTP Archive 171

This progression in web fonts shows. Web font usage continues to grow. In the 2020 Fonts128

chapter, 82% of all desktop sites used web fonts. In the two years since then, usage has

increased to about 84%. The numbers are slightly lower for mobile, but represents a similar

growth.

While we’ve made tremendous progress we’re not quite there yet. Large percentages of the

world’s population can’t use web fonts because their writing systems are either too large or too

complex to be delivered as a (small) web font. Fortunately, the W3C Fonts Working Group129 is

working hard on the Incremental Font Transfer130 web standard that will hopefully solve this.

There was no Fonts chapter in 2021, but we hope we can make up for that this year. We took a

slightly different angle this year by taking a closer look at what is inside font files and how fonts

are used in CSS. We of course also returned to the “classics” such as services, font-display ,

and resource hints usage. Finally, we wrap up the chapter with two special focus sections on

variable fonts and color fonts—because we think they are great.

Figure 5.1. Webfont usage.

128. https://almanac.httparchive.org/en/2020/fonts
129. https://www.w3.org/Fonts/WG/
130. https://www.w3.org/TR/IFT/

Part I Chapter 5 : Fonts

172 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/fonts/webfont-usage.png
https://almanac.httparchive.org/static/images/2022/fonts/webfont-usage.png
https://almanac.httparchive.org/en/2020/fonts
https://www.w3.org/Fonts/WG/
https://www.w3.org/TR/IFT/

Performance

Surprisingly, not a lot has changed in the types of fonts served. About 75% of all font files are

served as WOFF2131, about 12% as WOFF and the remainder as either octet-stream or TrueType

Font—and then a whole bunch of random MIME types. This is fairly similar to the results in the

2020 Fonts chapter132. Fortunately, SVG and EOT font usage has almost disappeared completely.

As noted in 2019, 2020: WOFF2 offers the best compression and should be the preferred

format. In fact, we think it is also time to proclaim:

This will simplify your CSS and workflow massively and also prevents any accidental double or

incorrect font downloads. WOFF2 is now supported everywhere133. So, unless you need to

support really ancient browsers, just use WOFF2. If you can’t, consider not serving any web

fonts to those older browsers at all. This will not be a problem if you have a robust fallback

strategy in place. Visitors on older browsers will simply see your fallback fonts.

Figure 5.2. Popular web font MIME types.

Use only WOFF2 and forget about everything else. "
131. https://www.w3.org/TR/WOFF2/
132. https://almanac.httparchive.org/en/2020/fonts#formats-and-mime-types
133. https://caniuse.com/woff2

Part I Chapter 5 : Fonts

2022 Web Almanac by HTTP Archive 173

https://almanac.httparchive.org/static/images/2022/fonts/popular-web-font-mime-types.png
https://almanac.httparchive.org/static/images/2022/fonts/popular-web-font-mime-types.png
https://www.w3.org/TR/WOFF2/
https://almanac.httparchive.org/en/2020/fonts#formats-and-mime-types
https://almanac.httparchive.org/en/2020/fonts#formats-and-mime-types
https://caniuse.com/woff2

Hosting

Where do people get their fonts? Do they self host, or use a web font service? Both? Let’s take a

look at the numbers.

In general, it is a mixture: 67% self host and use a service. Only 19% only use self hosting

exclusively. We expect this number to go up in the coming years for two reasons: there is no

longer a performance benefit to using a hosted service after the introduction of cache

partitioning134, and European courts are slowly becoming highly skeptical of European-based

companies using Google Fonts135.

We can further split this data by service. Perhaps not surprisingly, Google Fonts136 is the most

popular web font service with nearly 65% of all web pages using it. Free is hard to beat indeed.

Figure 5.3. Hosting type.

134. https://developers.google.com/web/updates/2020/10/http-cache-partitioning
135. https://www.theregister.com/2022/01/31/website_fine_google_fonts_gdpr/
136. https://fonts.google.com/

Part I Chapter 5 : Fonts

174 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/fonts/hosting-type.png
https://almanac.httparchive.org/static/images/2022/fonts/hosting-type.png
https://developers.google.com/web/updates/2020/10/http-cache-partitioning
https://developers.google.com/web/updates/2020/10/http-cache-partitioning
https://www.theregister.com/2022/01/31/website_fine_google_fonts_gdpr/
https://www.theregister.com/2022/01/31/website_fine_google_fonts_gdpr/
https://fonts.google.com/

The next runner-up is the Font Awesome137 web service, which is used on nearly 7% of sites.

That is an amazing achievement with only a single font family! In third place is the Adobe

Fonts138 web service, which is used on 4.2% of sites. Trailing far behind are the Fonts.com139 and

Cloud.Typography140 services, both present on 0.2% of sites.

Looking back at previous years, we can see that Google Fonts usage declined for the first time

this year! It’s hard to say if this is due to the aforementioned cache partitioning, GDPR, or

something else entirely. The decline is only slight, so it will be interesting to see if the trend

continues next year.

In contrast, both Font Awesome and the Adobe Fonts service grew significantly over the last

few years. Font Awesome service usage grew 86% from 2019 to 2022, while Adobe Fonts

usage grew by 24% in the same period.

Note that the services data is measured differently compared to the 2020 and 2019 font

chapters. Those chapters looked at the number of requests to a service, whereas the 2022 data

looks at pages using the services. Thus the data in 2022 is more accurate as it isn’t influenced by

the number of fonts loaded on a site. For example, the drop in Google Fonts usage noted in the

2020 chapter was most likely caused by Google Fonts switching to variable fonts and thereby

significantly reducing the number of requests to their service.

Figure 5.4. Webfont usage by service.

137. https://fontawesome.com/
138. https://fonts.adobe.com/
139. https://www.fonts.com/
140. https://www.typography.com/webfonts

Part I Chapter 5 : Fonts

2022 Web Almanac by HTTP Archive 175

https://almanac.httparchive.org/static/images/2022/fonts/webfont-usage-by-service.png
https://almanac.httparchive.org/static/images/2022/fonts/webfont-usage-by-service.png
https://fontawesome.com/
https://fonts.adobe.com/
https://fonts.adobe.com/
https://www.fonts.com/
https://www.typography.com/webfonts

File sizes

Compression is a great way to reduce the amount of data that needs to be downloaded, but it

has its limits. To better understand what influences font file sizes, let’s take a look at the median

font sizes across all fonts.

The median font size is about 20 kilobytes. That is pretty good. However, as we have seen

earlier, font services account for nearly 70% of all font requests. Services like Google Fonts and

Adobe Fonts have teams dedicated to optimizing the fonts as much as possible, so the median

font sizes are likely heavily skewed by these services.

Figure 5.5. Font sizes.

Part I Chapter 5 : Fonts

176 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/fonts/font-sizes.png
https://almanac.httparchive.org/static/images/2022/fonts/font-sizes.png

Looking at self-hosted font sizes paints a quite different picture. The median font size nearly

doubles to about 40 kilobytes. What is going on here? If we revisit the chart of popular web font

MIME types, and remove all requests coming from web font services we get some insight into

what might be going on.

A lot of websites using self-hosted fonts are still using WOFF instead of WOFF2. It’s not clear if

the fonts on these sites were never updated since WOFF2 was introduced, or if not enough

developers know about WOFF2. Regardless, it’s an easy optimization that could benefit a lot of

sites.

Figure 5.6. Self-hosted font sizes.

Part I Chapter 5 : Fonts

2022 Web Almanac by HTTP Archive 177

https://almanac.httparchive.org/static/images/2022/fonts/self-hosted-font-sizes.png
https://almanac.httparchive.org/static/images/2022/fonts/self-hosted-font-sizes.png

However, the difference in median font size between services and self-hosted is too large to be

explained by a lower usage of WOFF2. While WOFF2 offers excellent compression,

compression alone does not explain the large difference in median font sizes. The web font

services must be performing other types of optimizations that aren’t being done (enough) for

self hosted fonts. To find the answer, we’ll need to take a look at the insides of a font.

OpenType table sizes

A typical font is essentially a tiny relational database141 with each table storing data like glyph

shapes, glyph relationships, and metadata. For example, there are tables to store the vector

Bézier curves that make up glyphs—the characters in the font. There are also tables for relating

glyphs to one another, that store things like kerning and ligature relationships (i.e. swap these

two glyphs with this one when they are used together, like the famous fi ligature).

A reasonable way to measure how much of an impact a table has on overall file size is to

multiply its median size by the number of fonts that include that table.

Figure 5.7. Popular web font MIME types (self-hosted).

141. https://simoncozens.github.io/fonts-and-layout/opentype.html

Part I Chapter 5 : Fonts

178 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/fonts/popular-web-font-mimetypes-self-hosted.png
https://almanac.httparchive.org/static/images/2022/fonts/popular-web-font-mimetypes-self-hosted.png
https://simoncozens.github.io/fonts-and-layout/opentype.html

The top ten highest impact tables starts with the glyf , CFF , GPOS , and hmtx tables. These

contain the data for the Bézier curves that make up the outlines of all glyphs (glyf and CFF),

OpenType positioning features (GPOS) and horizontal metrics (hmtx). This is great because

these tables are directly related to the number of glyphs in the font. Reduce the number of

glyphs in the font by removing glyphs you don’t need and you will dramatically reduce its file

size.

Figuring out what you need and what you don’t need142 is the hard part though. You might

accidentally remove glyphs, or break OpenType features that you need to render text correctly.

Instead of subsetting manually using, for example, font tools143, you can use tools like subfont144

or glyphhanger145 to automatically create a “perfect” subset based on the content on your site.

However, be mindful whether the license of your font permits such modifications.

It is interesting to note that the name and post tables are in the top 10. These two tables

primarily contain metadata that is important for desktop fonts, but not necessary for web fonts.

This is an indication a lot of web fonts contain metadata that can be stripped without

consequences, such as name table entries, glyph names in the post table, non-Unicode cmap
entries, etc. We would love to see a universal set of recommendations (or even a pngcrush146-like

Figure 5.8. Impact (median file size × number of requests as percentage of total).

OpenType table Impact

glyf (vector shapes) 79.6%

CFF (vector shapes) 4.9%

GPOS (positioning relationships) 4.7%

hmtx (horizontal metrics) 2.5%

post (metadata) 2.2%

name (name metadata) 1.4%

cmap (maps character codes to glyphs) 1.3%

fpgm (font program) 0.9%

kern (kerning data) 0.6%

142. https://bramstein.com/writing/web-font-anti-patterns-subsetting.html
143. https://fonttools.readthedocs.io/en/latest/subset/index.html
144. https://github.com/Munter/subfont
145. https://github.com/zachleat/glyphhanger
146. https://pmt.sourceforge.io/pngcrush/

Part I Chapter 5 : Fonts

2022 Web Almanac by HTTP Archive 179

https://bramstein.com/writing/web-font-anti-patterns-subsetting.html
https://fonttools.readthedocs.io/en/latest/subset/index.html
https://github.com/Munter/subfont
https://github.com/zachleat/glyphhanger
https://pmt.sourceforge.io/pngcrush/

tool) that can be used by foundries and web developers to remove every last unnecessary byte

from a web font.

Outline formats

You might have noticed the OpenType sizes table contains two entries for vector glyph outline

data: glyf and CFF . There are actually four competing ways to store vector outlines in

OpenType: TrueType (glyf), Compact Font Format (CFF), Compact Font Format 2 (CFF2),

and Scalable Vector Graphics (SVG ; not to be confused with the old SVG font format). There

are also three image based formats—we will talk about two of them in the color fonts section.

The OpenType specification is what you could charitably call “a compromise”. Several competing

approaches to do mostly the same thing were added to the specification because there was no

consensus. If you’re interested in how this came to be, The Font Wars147 by David Lemon is a

great read. We’ll see this pattern of competing approaches repeated again and again in the

sections on variable and color fonts (though with different actors). At the end of the day, having

multiple ways to store vector outlines mostly works, but it does place a heavy additional burden

on type designers and implementations—not to mention increasing the attack surface area for

exploits.

Type designers can choose the outline format they prefer. Looking at the distribution of outline

formats, it is pretty clear what type designers have chosen. The overwhelming majority (91%)

of fonts use the glyf outline format, while 9% use the CFF outline format. There is some

SVG color font usage as well, but less than 1% (not pictured).

147. https://www.pastemagazine.com/design/adobe/the-font-wars/

Part I Chapter 5 : Fonts

180 2022 Web Almanac by HTTP Archive

https://www.pastemagazine.com/design/adobe/the-font-wars/

The OpenType specification lists the differences between glyf and CFF :

• The glyf format uses quadratic Bézier curves while CFF (and CFF2) uses cubic

Bézier curves. This matters to some type designers, but not to users of the font.

• The glyf format has more control over hinting—making small adjustments so that

the glyph outlines snap to the correct pixels at smaller sizes—while CFF has most

of its hinting built into the text rasterizer.

• The CFF format claims to be a more efficient format, resulting in smaller font sizes.

The last claim is interesting. Is CFF smaller?

Figure 5.9. Outline formats.

Part I Chapter 5 : Fonts

2022 Web Almanac by HTTP Archive 181

https://almanac.httparchive.org/static/images/2022/fonts/outline-formats.png
https://almanac.httparchive.org/static/images/2022/fonts/outline-formats.png
https://docs.microsoft.com/en-us/typography/opentype/otspec191alpha/glyphformatcomparison_delta
https://docs.microsoft.com/en-us/typography/opentype/otspec191alpha/glyphformatcomparison_delta
https://docs.microsoft.com/en-us/typography/opentype/otspec191alpha/glyphformatcomparison_delta

On average, CFF does indeed produce a smaller table size. However, the reality is more

nuanced, as it doesn’t take compression into account—the table sizes are recorded after the

font has been uncompressed.

As can be seen in the WOFF2 evaluation report148, the median glyf compression is at 66%

while the median CFF compression is at 50% (from uncompressed to compressed using

WOFF2).

Figure 5.10. Font outline sizes.

148. https://www.w3.org/TR/2016/NOTE-WOFF20ER-20160315/#brotli-adobe-cff

Part I Chapter 5 : Fonts

182 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/fonts/font-outline-sizes.png
https://almanac.httparchive.org/static/images/2022/fonts/font-outline-sizes.png
https://www.w3.org/TR/2016/NOTE-WOFF20ER-20160315/#brotli-adobe-cff

Applying compression paints a very different picture. The median file size differences are

negligible, and large fonts are much smaller when using glyf outlines!

In other words, even if CFF starts out smaller, it compresses much less than glyf , so it all

evens out in the end. In fact—for larger files—it appears using the glyf format produces

smaller sizes.

Resource hints

Resource hints are special instructions to the browser to load or render a resource before it

normally would. Browsers normally only load web fonts when they know a font is used on the

page. In order to know that, it needs to have parsed both the HTML and CSS. However, if you, as

a web developer, know that a font will be used, you can use resource hints to tell the browser to

load fonts much earlier.

There are several types of resource hints that are relevant to web fonts: dns-prefetch ,

preconnect , and preload —in order of the lowest to highest impact. Ideally you would like

to preload your most important fonts, but depending on where they are hosted that may not

always be possible.

Figure 5.11. Compressed font outline sizes.

Part I Chapter 5 : Fonts

2022 Web Almanac by HTTP Archive 183

https://almanac.httparchive.org/static/images/2022/fonts/compressed-font-outline-sizes.png
https://almanac.httparchive.org/static/images/2022/fonts/compressed-font-outline-sizes.png

There hasn’t been any large change in the use of dns-prefetch hints since 2020, but there

has been a fairly significant increase in the use of preload (from 17% in 2020 to 20% in 2022)

and preconnect (from 8% in 2020 to 15% in 2022). This is great!

As mentioned in the 2020 chapter149, preload and preconnect resource hints have the

single largest impact on your font loading performance. In most cases it is as simple as adding a

link element to your head. For example, if you use Google Fonts:

<link rel="preconnect" href="https://fonts.gstatic.com">

If you self-host your fonts you can go even further and provide hints to the browser to preload

your most important fonts—your primary text font for example. That way the browser can load

it early and it will likely be available when text rendering starts.

font-display

For many years most browsers did not render text until web fonts had loaded. On slow

connections, this would often result in several seconds of invisible text even though the text

content had already loaded. This behavior is called block, because it blocks rendering of the

Figure 5.12. Fonts resource hints usage.

149. https://almanac.httparchive.org/en/2020/fonts#resource-hints

Part I Chapter 5 : Fonts

184 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/fonts/fonts-resource-hints-usage.png
https://almanac.httparchive.org/static/images/2022/fonts/fonts-resource-hints-usage.png
https://almanac.httparchive.org/en/2020/fonts#resource-hints

text. Other browsers showed fallback fonts right away and swapped them when the web font

loaded. When a fallback font is replaced by a web font, this is called swap.

To give web developers more control over font loading, the font-display descriptor was

introduced to tell the browser how it should behave while web fonts are loading. It defines four

different values of what to do while fonts are loading. These values are implemented using

different combinations of block and swap behavior.

• swap : block for a very short period and always swap.

• block : block for a short period and always swap.

• fallback : block for a very short period and swap within a short period.

• optional : block for a very short period and no swap period.

There is also auto , which leaves the decision up to the browser—all modern browsers use

block as the default value.

Use of font-display: swap has grown to an impressive 30% (from 11% in 2020150). A fair

chunk of this increase can most likely be attributed to Google Fonts making swap the

recommended value in 2019151. It is also interesting to see the block value overtaking auto

Figure 5.13. Usage of font-display .

150. https://almanac.httparchive.org/en/2020/fonts#racing-to-first-paint
151. https://www.youtube.com/watch?v=YJGCZCaIZkQ&t=1880s

Part I Chapter 5 : Fonts

2022 Web Almanac by HTTP Archive 185

https://almanac.httparchive.org/static/images/2022/fonts/usage-of-font-display.png
https://almanac.httparchive.org/static/images/2022/fonts/usage-of-font-display.png
https://almanac.httparchive.org/en/2020/fonts#racing-to-first-paint
https://www.youtube.com/watch?v=YJGCZCaIZkQ&t=1880s
https://www.youtube.com/watch?v=YJGCZCaIZkQ&t=1880s

as the second most used value. We are not sure why developers are intentionally degrading the

performance of their site, but it is an interesting, if not slightly worrying, development.

Our guess is that developers—or their customers—really dislike seeing a flash of fallback fonts.

Using font-display: block is an easy “fix” for that problem. However, there is a better

solution on the horizon. In the near future you can use CSS font metric overrides to tweak your

fallback fonts to approximate the metrics of your web fonts. This will reduce the jarring reflow

of text when a fallback font is swapped with a web font.

The CSS ascent-override , descent-override , line-gap-override , and size-
adjust descriptors go into the @font-face rule and can be used to override the metrics in

any font. You can use these descriptors with local() to create a customized fallback152 font

that roughly matches your web font—hey, finally a good use for local() .

These @font-face descriptors are very new, but are already seeing some use. To make them

even more useful developers need two things:

1. A set of consistent fallback fonts that are available in all browsers and on all

platforms. They could even be variable fonts. Imagine the possibilities.

2. Tools to automatically match fonts by tweaking its size and metrics. Doing this by

hand is very time-consuming, so a tool is a must. This is not intended as a

replacement for the web font, but merely as a temporary fallback while the web

Figure 5.14. CSS font metrics override usage.

152. https://developer.mozilla.org/docs/Web/CSS/@font-face/ascent-override#overriding_metrics_of_a_fallback_font

Part I Chapter 5 : Fonts

186 2022 Web Almanac by HTTP Archive

https://developer.mozilla.org/docs/Web/CSS/@font-face/ascent-override#overriding_metrics_of_a_fallback_font
https://bramstein.com/writing/web-font-anti-patterns-local-fonts.html
https://bramstein.com/writing/web-font-anti-patterns-local-fonts.html
https://almanac.httparchive.org/static/images/2022/fonts/css-font-metrics-override-usage.png
https://almanac.httparchive.org/static/images/2022/fonts/css-font-metrics-override-usage.png

fonts are loading (or as a stand-in if the fonts don’t load or the browser is very old).

We’re slowly getting there with tools such as Font Style Matcher153 and Perfect-ish Font

Fallback154, but unfortunately, fallback fonts are still very much platform dependent.

Font usage

Performance is important, but it is also interesting to see how fonts are being used on the web.

For example, what are the most popular fonts and foundries? Are people using OpenType

features? Let’s take a look at the data.

153. https://meowni.ca/font-style-matcher/
154. https://www.industrialempathy.com/perfect-ish-font-fallback/

Part I Chapter 5 : Fonts

2022 Web Almanac by HTTP Archive 187

https://meowni.ca/font-style-matcher/
https://www.industrialempathy.com/perfect-ish-font-fallback/
https://www.industrialempathy.com/perfect-ish-font-fallback/

Families & foundries

With Google Fonts’ massive impact on web font serving, it is no surprise the most used font on

the web is Roboto. Roboto was created by Google as a system font for its Android operating

system. This also explains the huge discrepancy between Roboto’s use on mobile compared to

desktop sites. On Android, Google Fonts will use the system installed version instead of

Figure 5.15. Most used fonts.

Family desktop mobile

Roboto 14.5% 1.5%

Font Awesome 10.5% 12.8%

Noto Sans 10.1% 8.0%

Open Sans 5.9% 7.7%

Lato 3.6% 3.9%

Poppins 3.0% 4.0%

Montserrat 2.5% 3.1%

Source Sans Pro 1.6% 1.9%

icomoon 1.3% 1.5%

Proxima Nova 1.0% 1.0%

Raleway 1.0% 1.3%

Noto Serif 0.8% 1.0%

Ubuntu 0.7% 0.9%

NanumGothic 0.7% 0.3%

Oswald 0.6% 0.8%

PT Sans 0.6% 0.8%

GLYPHICONS Halflings 0.5% 0.6%

Rubik 0.4% 0.4%

eicons 0.4% 0.6%

revicons 0.4% 0.5%

Part I Chapter 5 : Fonts

188 2022 Web Almanac by HTTP Archive

downloading it as a web font.

Font Awesome takes the number two spot, which is an impressive accomplishment for what is

essentially a single font family. Font Awesome, combined with Icomoon, Glyphicons, eicons, and

revicons make up nearly 18% of all web fonts used on websites! Icon fonts are problematic

from an accessibility point of view155, so it is worrying to see this being so popular.

A special note should also be made of Proxima Nova at 1% usage. It is the only commercial, non-

icon, font in the top 20. That’s an amazing achievement by Mark Simonson Studio156.

Another interesting fact is that a large portion of the top families are open source. This can be

credited to Google Fonts who have either commissioned these fonts or included existing open

source fonts in their library.

Figure 5.16. Sites using icon web fonts.

18%

Figure 5.17. Most popular font foundries.

Vendor desktop mobile

Google 30.5% 17.7%

Font Awesome 12.3% 15.6%

Łukasz Dziedzic 3.6% 4.3%

Indian Type Foundry 3.0% 4.1%

Julieta Ulanovsky 2.5% 3.1%

Adobe 1.6% 1.9%

Ascender Corporation 1.6% 2.0%

Icomoon 1.3% 1.5%

Mark Simonson Studio 1.3% 1.3%

ParaType Inc. 1.0% 1.4%

155. https://fontawesome.com/docs/web/dig-deeper/accessibility
156. https://www.marksimonson.com/

Part I Chapter 5 : Fonts

2022 Web Almanac by HTTP Archive 189

https://fontawesome.com/docs/web/dig-deeper/accessibility
https://www.marksimonson.com/

The list of most popular type foundries (or in some cases type designers) is equally fascinating.

Besides large companies like Google, Adobe, Ascender (Monotype), it is good to see several

smaller companies and even several individuals having such a large impact.

OpenType features

OpenType features are often referred to as a font’s superpowers. And of course, the fonts with

superpowers are often unrecognized. OpenType features are hard to discover and use.

Fortunately, there are web tools, such as Wakamai Fondue157, that clearly show you which

features there are, what they do, and how to use them.

Some OpenType features are for stylistic purposes only, while others are required to render

text correctly. You might often see these two mentioned as discretionary and required features.

Almost 44% of all fonts have either discretionary or required OpenType features. So, there’s a

good chance the font you are using also has super powers!

Discretionary features can be used to, for example, replace two adjacent glyphs with a ligature

to improve legibility. It’s also common for OpenType features to offer alternative versions of

glyphs, for example by adding swashes.

A significant number of fonts have discretionary OpenType features158. The most common

discretionary feature is, not surprisingly, ligatures. This is followed by a whole range of features

that modify numerals like fractions, proportional numerals, tabular numerals, lining numerals,

and ordinals. Superscripts are also somewhat common.

Figure 5.18. Fonts that include OpenType features.

44%

157. https://wakamaifondue.com/
158. https://fonts.google.com/knowledge/introducing_type/introducing_alternate_glyphs

Part I Chapter 5 : Fonts

190 2022 Web Almanac by HTTP Archive

https://wakamaifondue.com/
https://fonts.google.com/knowledge/introducing_type/introducing_alternate_glyphs

If we look at required OpenType features, there are two that stand out from everything else:

kerning and localized forms. Localized forms are used to specify alternate glyphs that are

required or preferred by some languages. This implies that a good amount of fonts support

multiple languages, which is a great sign of progress for internationalization.

Kerning is the process of slightly increasing or decreasing the space between any combination

of two glyphs to make the space between them seem more even. Kerning is enabled by default

on all browsers, so as long as the font supports kerning it will be enabled.

Only 34% of all web fonts have kerning data stored as either an OpenType feature, or using the

older kern table. Nearly all fonts need kerning to look correct, so we would have expected this

number to be much higher than it is. One explanation is that when web fonts started taking off,

browser support for kerning wasn’t very good, so many early web fonts did not include kerning

data to save on space. Nowadays, all browsers support kerning so there is no reason fonts

should not have kerning data in them.

Figure 5.19. OpenType features support in fonts.

Figure 5.20. Fonts including kerning data.

34%

Part I Chapter 5 : Fonts

2022 Web Almanac by HTTP Archive 191

https://almanac.httparchive.org/static/images/2022/fonts/opentype-features-support-in-fonts.png
https://almanac.httparchive.org/static/images/2022/fonts/opentype-features-support-in-fonts.png

What’s even more interesting is that kerning is also the most common feature tag used in the

font-feature-settings property. Nearly 3.2% of sites manually enable (or worse, disable)

kerning. There is no need for that; it is enabled by default. In fact, there is no need to ever

change kerning settings through font-feature-settings or the higher level font-
kerning property . Disabling kerning won’t make your site faster, but your typesetting will

be poorer for it.

The other most used features are roughly in line with what type designers actually include:

ligatures and various numerals. It is interesting to see the palt (proportional alternates)

feature in this list, as it is primarily used for CJK fonts (which themselves aren’t common

because they are usually too large to be used as web fonts, even with WOFF2 compression).

Like kerning, the calt feature (contextual alternates) is enabled by default and should not be

explicitly enabled or disabled. There are many other useful OpenType features such as stylistic

sets, character variants, small caps, and swashes that have low usage, but have the potential to

really enhance your typography. Our recommendation is to drop your fonts in Wakamai

Fondue159 and explore all the hidden superpowers.

Figure 5.21. OpenType feature usage in CSS.

159. https://wakamaifondue.com/

Part I Chapter 5 : Fonts

192 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/fonts/openType-feature-usage-in-css.png
https://almanac.httparchive.org/static/images/2022/fonts/openType-feature-usage-in-css.png
https://drafts.csswg.org/css-fonts/#font-kerning-prop
https://drafts.csswg.org/css-fonts/#font-kerning-prop
https://drafts.csswg.org/css-fonts/#font-kerning-prop
https://drafts.csswg.org/css-fonts/#font-kerning-prop
https://wakamaifondue.com/
https://wakamaifondue.com/

Overall, usage of OpenType feature usage is quite low on the web. We were hoping most people

are using the high-level font-variant properties to enable OpenType features, but their

usage is even lower than font-feature-settings . The font-feature-settings
property is used on 12.6% of sites, while the font-variant properties are used on only 3.5%

of sites.

This is disappointing. Not only are people not using the OpenType features present in fonts,

they are also primarily using the error-prone font-feature-settings property instead of

the high-level font-variant property. You need to be extra careful with the font-
feature-settings property, as it will reset any OpenType feature you didn’t explicitly list to

its default value160.

All of the most commonly used font-feature-settings values have font-variant
equivalents that are more readable, and do not unset other OpenType features as a side effect.

While support for these high-level features wasn’t that great in the past they are well

supported161 these days—except for the recently introduced font-variant-alternates
property.

Figure 5.22. Usage of font-feature-settings vs font-variant.

160. https://pixelambacht.nl/2022/boiled-down-fixing-variable-font-inheritance/
161. https://caniuse.com/?search=font-variant

Part I Chapter 5 : Fonts

2022 Web Almanac by HTTP Archive 193

https://almanac.httparchive.org/static/images/2022/fonts/usage-of-font-feature-settings-vs-font-variant.png
https://almanac.httparchive.org/static/images/2022/fonts/usage-of-font-feature-settings-vs-font-variant.png
https://pixelambacht.nl/2022/boiled-down-fixing-variable-font-inheritance/
https://pixelambacht.nl/2022/boiled-down-fixing-variable-font-inheritance/
https://caniuse.com/?search=font-variant
https://caniuse.com/?search=font-variant

The most used font-variant value is small-caps at 1.4% of pages. This is surprising,

because small caps are only supported by 0.7% of fonts. That means that most people using

font-variant: small-caps and font-variant-caps will get faux small caps that are

generated by the browser instead of small caps created by the type designer! In the future, you

can avoid faux small caps by using the font-synthesis-small-caps property162.

The other values roughly match what is provided by the fonts themselves. Even though use of

the font-variant properties is low, we expect—or rather hope—that these numbers will go

up over time and use of font-feature-settings becomes relegated to use with custom or

proprietary OpenType features.

Writing system and languages

To understand what kind of fonts are being made and used, we thought it would be interesting

Figure 5.23. Usage of CSS font-variant values.

162. https://drafts.csswg.org/css-fonts-4/#font-synthesis-small-caps

Part I Chapter 5 : Fonts

194 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/fonts/usage-of-css-font-variant-values.png
https://almanac.httparchive.org/static/images/2022/fonts/usage-of-css-font-variant-values.png
https://drafts.csswg.org/css-fonts-4/#font-synthesis-small-caps

to look at what languages fonts support. For example, do people make a lot of German,

Vietnamese, or Urdu fonts? Unfortunately, it is hard to answer this question because a lot of

languages share the same writing system. That means they might share the same character set,

but might have only been explicitly designed for one specific language. So instead of languages,

we’ll take a look at writing systems.

Not surprisingly, the Latin system is in the lead with a whopping 53.6% of all fonts supporting (a

significant) subset of the Latin writing system163. This includes a lot of languages used in the

western world, like English, French, and German. However, it also covers languages in Asia, such

as Vietnamese and Tagalog. The number two and three spots are taken by Cyrillic and Greek.

Again, this is not a surprise, they are commonly used and a reasonably small amount of work to

add to a font due to their limited number of extra glyphs that need to be added. Katakana and

Hiragana (Japanese) are at 1% and 0.9% respectively—a combined 1.9%. Note that about 10%

of fonts failed to meet the minimum threshold of a writing system (not pictured). This includes

fonts that, for example, only support a small number of characters or ones that are heavily

subsetted.

Sadly, other writing systems are much less prevalent. For example, Han (Chinese) is the 2nd

most used writing system in the world164 (after Latin), but only supported by 0.2% of web fonts.

Arabic is the third most used writing system, but again, only supported by 0.4% of web fonts.

Figure 5.24. Writing systems supported by fonts.

163. https://en.wikipedia.org/wiki/List_of_languages_by_writing_system#Latin_script
164. https://www.worldatlas.com/articles/the-world-s-most-popular-writing-scripts.html

Part I Chapter 5 : Fonts

2022 Web Almanac by HTTP Archive 195

https://almanac.httparchive.org/static/images/2022/fonts/writing-systems-supported-by-fonts.png
https://almanac.httparchive.org/static/images/2022/fonts/writing-systems-supported-by-fonts.png
https://en.wikipedia.org/wiki/List_of_languages_by_writing_system#Latin_script
https://www.worldatlas.com/articles/the-world-s-most-popular-writing-scripts.html
https://www.worldatlas.com/articles/the-world-s-most-popular-writing-scripts.html

The reason that some of these writing systems are not used as web fonts165 is that they are very

large due to the sheer number of glyphs they have to support, and the difficulty in subsetting

them correctly.

While services like Google Fonts and Adobe Fonts support these writing systems, they are

using proprietary technologies that simply are not available for self-hosting. However, the W3C

Fonts Working Group is working on a new standard called Incremental Font Transfer166 that

enables web developers to self-host large fonts. We hope to see other writing systems catch up

with Latin once this technology becomes widely available.

Generic font families

We already touched on fallback fonts while talking about font-display . Sometimes you

don’t need web fonts at all though, for example in UI elements or form inputs. One of our

favorite ways to avoid using web fonts is to use the new generic system-ui family name

which maps to the font family used by the operating system. Did you know there are several

other generic families? There is ui-monospace , ui-sans-serif , ui-serif , and ui-
rounded as well, if you want to use an operating system font, but have slightly more specific

needs.

Figure 5.25. Usage of CSS generic font family names.

165. https://www.w3.org/TR/PFE-evaluation/#fail-large
166. https://www.w3.org/TR/IFT/

Part I Chapter 5 : Fonts

196 2022 Web Almanac by HTTP Archive

https://www.w3.org/TR/PFE-evaluation/#fail-large
https://www.w3.org/TR/IFT/
https://almanac.httparchive.org/static/images/2022/fonts/usage-of-css-generic-font-family-names.png
https://almanac.httparchive.org/static/images/2022/fonts/usage-of-css-generic-font-family-names.png

While these are fairly new, they are already seeing significant use. The usual suspects, sans-
serif , monospace , and serif obviously take the lead as they have been around since the

first version of the CSS specification.

The most popular, and well-known, is system-ui at 3.6%, followed by ui-monospace at

0.5% and ui-sans-serif at 0.4%. It isn’t clear what the 0.5% of requests for fantasy were

hoping for, as that generic is so under-specified as to be effectively useless.

We hope to see more use of these generic family names next year. They are great for UI

elements, forms, or really anything where you want to evoke a native feel. As an added benefit,

they are also great for performance as they are guaranteed to use a locally installed font.

Font smoothing

And now for a complete surprise—to us anyway: people really like to specify their MacOS-only

font smoothing preferences167. For example, the -webkit-font-smoothing: antialiased
value is used on 73.4% of all sites. This is surprising because it—and its siblings -mox-osx-
font-smoothing , and font-smoothing —are not even official CSS properties. This might

make them the most used unofficial CSS properties!

Our hunch this is a combination of CSS frameworks including these properties and a dislike of

Figure 5.26. Usage of font smoothing properties.

167. https://developer.mozilla.org/docs/Web/CSS/font-smooth

Part I Chapter 5 : Fonts

2022 Web Almanac by HTTP Archive 197

https://almanac.httparchive.org/static/images/2022/fonts/usage-of-font-smoothing-properties.png
https://almanac.httparchive.org/static/images/2022/fonts/usage-of-font-smoothing-properties.png
https://developer.mozilla.org/docs/Web/CSS/font-smooth

how fonts are rendered slightly bolder on macOS—variable font grades to the rescue! It would

be interesting to return to these properties in the 2023 Fonts chapter. Perhaps it is also time to

put these properties on a standards track? The demand is clearly there.

Variable fonts

Variable fonts allow type designers to combine multiple styles of a family into a single font file.

They do this by defining one or more design axes, such as weight (thin, regular, and bold) or

width (condensed, normal, and expanded). Instead of storing each style as individual font files, a

variable font interpolates them from a handful of “master” instances.

For example, even if the type designer did not explicitly create a semibold style, using a variable

font with a weight axis, the text rendering engine will simply interpolate a semibold style for

you (and any other weight you might need, assuming the variable font’s weight axis supports

that range). Not only do variable fonts increase typographic expressiveness, they also offer a

major benefit for web developers in terms of file size savings when several font variations are

used. Variable fonts will however be larger than a single variation.

Usage of variable fonts has nearly tripled since the last measurement in the Almanac’s 2020

Fonts chapter! Nearly 29% of websites use variable fonts. Most of this growth seems to have

happened in the last year, with an amazing 125% growth.

Figure 5.27. Usage of variable fonts.

Part I Chapter 5 : Fonts

198 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/fonts/usage-of-variable-fonts.png
https://almanac.httparchive.org/static/images/2022/fonts/usage-of-variable-fonts.png

This impressive growth in usage can be explained by splitting the request data by host. Google

Fonts accounts for 97% of variable fonts served, while everyone else accounts for only 3%.

Even with Google’s massive influence on web font serving, this growth can only be explained by

replacing popular existing static styles with variable versions, rather than the introduction of

completely new variable fonts.

As a result, Google Fonts and their users are probably seeing huge benefits in performance.

Variable fonts are usually smaller than using multiple static instances. For example, if a website

uses more than two or three styles from the same family, a variable font is smaller in file size

and only takes a single request. It doesn’t take a lot: using regular, bold, and light weights are

usually sufficient reasons to use a variable font. As an added benefit, with a variable font you

can also tweak the axes to suit your needs—semi-demi-bold anyone?

Regardless of a single actor being responsible for the growth, it is an amazing achievement, and

a good indicator of the usefulness of variable fonts to optimize your site’s performance.

Variable fonts also have two competing formats: the variable extensions of the glyf format

and the Compact Font Format 2 (CFF2) format. The main differences between the glyf
format and CFF2 are the same as its CFF predecessor: different types of Bézier curves, more

automated hinting, and a claim about smaller file sizes.

So which format should you use? Fortunately, for developers, type designers, and browser

vendors the situation is quite simple. Out of all variable fonts served, 99.99% use the variable

glyf format. Even if you exclude Google Fonts and other font services from the calculation

the number changes to a whopping 99.98%. Nobody is using CFF2 .

Our recommendation is to avoid CFF2 -based variable fonts (for now, at least). Browsers and

operating systems only recently added support for CFF2 , and some browsers still don’t

support it. The only tangible benefit of using CFF2 over glyf based variable fonts is the

supposed file size savings, but as we’ve seen in the performance section this claim is dubious at

Figure 5.28. Variable fonts used that are served by Google Fonts.

97%

Figure 5.29. Variable fonts using the glyf outline format.

99.99%

Part I Chapter 5 : Fonts

2022 Web Almanac by HTTP Archive 199

best.

So, how are people using variable fonts? Not surprisingly the weight axis is the most popular

value used with the font-variation-settings property, followed by optical sizes, width,

slant, italic, and grades.

This somewhat surprised us, because there is no need to use the low-level font-variation-
settings property to set a custom weight axis value. You can simply use the font-weight
property with a custom value, for example, font-weight: 550 for a weight between 500

and 600.

Figure 5.30. Usage of font-variation-settings axes.

Part I Chapter 5 : Fonts

200 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/fonts/usage-of-font-variation-settings-axes.png
https://almanac.httparchive.org/static/images/2022/fonts/usage-of-font-variation-settings-axes.png

Even more puzzling is that the most popular weight axis values are the “default” CSS weight

values that have been around since the early days of CSS! Only 16% of the weight values are

custom values along the weight range.

The most popular “custom” weight value is 550 at only 1.5% of use, followed by 450 at 1%

use. Similar results can be seen for the optical size, width, italic, and slant axes, which can be set

using the high-level font-optical-sizing , font-stretch , and font-style properties.

Using the higher level properties will make your CSS more readable and avoid accidentally

disabling an axis—a common source of errors with the low-level property.

One of the highly promoted benefits of variable fonts is animating one or multiple axes. Despite

the high usage of variable fonts, very few people are actually animating them through CSS

transitions or keyframes. Out of the entire HTTP Archive dataset, only a couple hundred

websites do any sort of animation involving variable fonts.

To us, it appears that variable fonts are primarily used for their performance benefits, and less

so for their ability to make typographic adjustments. While that’s great, we do hope to see more

people use variable fonts to their full typographic potential in the coming years.

Figure 5.31. Popular variable font weight values.

Part I Chapter 5 : Fonts

2022 Web Almanac by HTTP Archive 201

https://almanac.httparchive.org/static/images/2022/fonts/popular-variable-font-weight-values.png
https://almanac.httparchive.org/static/images/2022/fonts/popular-variable-font-weight-values.png

Color fonts

Color fonts are pretty much what you would expect: fonts with built in colors. Though the

technology was originally created for emoji fonts, there are now more text color fonts than

emoji fonts.

Color fonts usage has grown quite a bit since the last Fonts chapter in 2020. Usage went from

0.004% of pages using color fonts in 2020 to about 0.018% in 2022. While those numbers are

still very small, there is a clear growth in their usage.

However, compared to the growth in variable font usage, the limited uptake of color fonts is

somewhat disappointing. While color fonts are a relatively new addition to the OpenType

specification (2015), variable fonts are an even more recent addition (2016).

The primary factors that have severely hindered color font adoption (and might continue to do

so) is the ongoing standards “battle” for the one true color font format, and the lack of support in

browsers for the CSS that allows you to select and edit color font palettes—until recently.

There are currently four competing color font formats: two based on vector outlines (SVG and

COLR) and two on images (CBDT and sbix). The COLR format re-uses the existing glyph

outline and adds solid colors and layering to them. The most recent version, dubbed COLRv1
introduced gradients, compositing and blending modes as well. Due to its re-use of existing

glyph outlines, the COLR format also supports variable fonts, so you can have animated color

Figure 5.32. Color font usage.

Part I Chapter 5 : Fonts

202 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/fonts/color-font-usage.png
https://almanac.httparchive.org/static/images/2022/fonts/color-font-usage.png
https://www.typearture.com/variable-fonts/

fonts168. The SVG format takes a different approach and essentially embeds an SVG image for

each glyph in the font. Unfortunately, the SVG format does not support variable fonts, and is

unlikely to do so in the future. Both CBDT and sbix embed images for each glyph and they

only differ in the supported image formats.

Taking a look at usage data paints an interesting picture: 79% of color font usage is using SVG ,

19% uses COLRv0 , and 2% uses CBDT .

We can safely conclude that the image based formats are not popular, and for good reasons: the

embedded images don’t scale well, and their file sizes are not appropriate for web usage.

The split between the vector color font formats however is more nuanced. While SVG seems

to have the upper hand at the moment, COLR still has significant usage. The COLR format has

a lot going for it: it is supported by all browsers, it can be used in variable fonts, and it is easy to

implement. For those reasons alone, we expect it to become the most popular format. A more

cynical take is that it will become the most popular format because Google is refusing to

implement SVG support in Chrome and Android. Interestingly, Apple is refusing to implement

COLRv1 , because a lot of COLRv1 features are already supported by the SVG format.

Unfortunately, web developers are caught in the middle of this “color fonts war”. We hope this

situation is soon resolved and we can all start using color fonts.

The CSS specification has been updated to support color fonts to allow selection and

Figure 5.33. Color font formats.

168. https://www.typearture.com/variable-fonts/

Part I Chapter 5 : Fonts

2022 Web Almanac by HTTP Archive 203

https://www.typearture.com/variable-fonts/
https://almanac.httparchive.org/static/images/2022/fonts/color-font-formats.png
https://almanac.httparchive.org/static/images/2022/fonts/color-font-formats.png
https://bugs.chromium.org/p/chromium/issues/detail?id=306078
https://bugs.chromium.org/p/chromium/issues/detail?id=306078
https://bugs.chromium.org/p/chromium/issues/detail?id=306078
https://lists.webkit.org/pipermail/webkit-dev/2021-March/031765.html
https://lists.webkit.org/pipermail/webkit-dev/2021-March/031765.html
https://lists.webkit.org/pipermail/webkit-dev/2021-March/031765.html
https://css-tricks.com/colrv1-and-css-font-palette-web-typography/

customization of palettes169. Palettes are custom color schemes stored in the font by the type

designer. The CSS font-palette property allows you to select a palette from the font and

the @font-palette-values rule allows you to create new palettes or override existing ones.

One of the more obvious use cases of this technology is to have light and dark mode palettes

built right into the color font. There is a lot of unexplored potential there.

Unfortunately, usage of these CSS properties is currently nonexistent. This is likely because

support for these properties was only recently added to browsers combined with the limited

number of color fonts.

One of the main drivers behind the development of color font technology was emoji. However,

there are only a couple dozen web fonts that have color emoji. Most color fonts are for writing

text, not emoji. There could be several explanations for this:

• Every OS already includes their own color emoji font, so users don’t feel the need to

use anything else.

• There are a large number of emoji and it takes a lot of effort—and money—to create

fonts for them.

• Emoji fonts are generally quite large and not as suitable as web fonts.

Figure 5.34. Bradley Initials170 using COLR v1 and multiple palettes by David Jonathan Ross171.

169. https://css-tricks.com/colrv1-and-css-font-palette-web-typography/
170. https://tools.djr.com/misc/bradley-initials/
171. https://djr.com/

Part I Chapter 5 : Fonts

204 2022 Web Almanac by HTTP Archive

https://css-tricks.com/colrv1-and-css-font-palette-web-typography/
https://almanac.httparchive.org/static/images/2022/fonts/bradley-initials.png
https://almanac.httparchive.org/static/images/2022/fonts/bradley-initials.png
https://tools.djr.com/misc/bradley-initials/
https://djr.com/

Still, it would be nice to see some more diversity in emoji fonts. With the introduction of the

COLR v1 format we’re likely to see more emoji fonts in the future.

Again, all of this is based on very low usage numbers, but there appear to be some developing

trends. We’re not quite ready to declare 2023 the year of color fonts, but it seems clear we’ll

see significant color font growth in the coming years, especially as the industry settles on a

single recommended color font format and browser support for color fonts improves. Google

Fonts has also just added the first batch of color fonts172 to their library, which will surely have an

impact.

Conclusion

Looking back over this chapter and the previous years it stands out to us how much of an impact

web font services have had—and likely will continue to have. For example, Google Fonts alone is

responsible for most of web font usage, most of the popular web fonts, and most of variable

fonts usage. That’s an impressive feat.

While we strongly believe that self-hosting is the future for web fonts, it can not be denied that

using a web font service makes a lot of sense for a lot of developers. They are easy to use,

provide good out-of-the-box performance—though not the best—and for the most part you do

not need to worry about font licensing. It is a good tradeoff.

On the other hand, self-hosting is now easier than ever, and will give you the best performance,

more control, and no privacy headaches. If you plan to self-host, be sure to use WOFF2,

resource hints, and font-display . Combined, they will have the biggest impact on the font

loading performance of your site.

Variable fonts have taken off in a spectacular fashion in the last couple of years—thanks

Google! While most people seem to be using them for performance reasons, we believe this is a

case where adoption will drive innovation. We can’t wait to see what kind of fun and downright

crazy typography we’ll see in the coming years.

We’re cautiously optimistic about color fonts as well. Usage is finally growing. The technology

has been there for a while, but the disagreements over color font formats and the limited CSS

support have hindered adoption. We hope these will be resolved soon and we’ll start seeing

some real growth.

It is clear that web font usage will continue to grow and evolve over time. We’re curious to see

what the future holds. Technologies like Incremental Font Transfer173 will unlock web fonts for

172. https://material.io/blog/color-fonts-are-here
173. https://www.w3.org/TR/IFT/

Part I Chapter 5 : Fonts

2022 Web Almanac by HTTP Archive 205

https://material.io/blog/color-fonts-are-here
https://www.w3.org/TR/IFT/

more writing systems, enabling billions of people to start using web fonts for the first time.

That’s exciting!

Author

Bram Stein

@bram_stein bramstein http://www.bramstein.com/

Bram Stein is a developer and product manager. He cares a lot about typography

and is happiest working at the intersection between design and technology. He is

the author of the Webfont Handbook174 by A Book Apart and the FontFace

Observer175 library. He also speaks about typography and web performance at

conferences around the world.

174. https://abookapart.com/products/webfont-handbook
175. https://fontfaceobserver.com

Part I Chapter 5 : Fonts

206 2022 Web Almanac by HTTP Archive

https://twitter.com/bram_stein
https://github.com/bramstein
http://www.bramstein.com/
https://abookapart.com/products/webfont-handbook
https://fontfaceobserver.com/
https://fontfaceobserver.com/

Part I Chapter 6

Media

Written by Eric Portis and Akshay Ranganath
Reviewed by Nicolas Hoizey and Yoav Weiss
Analyzed by Eric Portis and Akshay Ranganath
Edited by Michael Lewittes

Introduction

Despite being hypertext, the web is extremely visual. In fact, images and videos are an essential

part of the web user experience. They’re also undergoing tremendous innovation, and the Web

Almanac gives us a unique opportunity to survey both how far the visual web has come—as

authors adopt new technologies such as AVIF, wide color, adaptive bitrate streaming, and lazy

loading—and how far it still has to go: I’m looking at you, animated GIF.

Let’s dive right in.

Images

Images account for a huge portion of the typical website’s page weight. We see from the Page

Weight chapter that the median website’s total weight in June of 2021 was 2,019 kilobytes (on

mobile), and 881 of those kilobytes were images. That’s more than HTML (30 KB), CSS (72 KB),

Part I Chapter 6 : Media

2022 Web Almanac by HTTP Archive 207

JavaScript (461 KB) and fonts (97 KB) combined.

Almost every page serves up some kind of an image, even if it’s just a background or favicon.

On the vast majority of pages—70% on mobile, and 80% on desktop—the most impactful

resource is an image. Largest Contentful Paint176 (LCP) is a web performance metric that

identifies the largest element above the fold. Most of the time that element has an image.

It’s hard to overstate the importance of images on the web. So, what can we say about the web’s

images?

Image resources

Let’s start with the resources themselves. Bitmap images are made of pixels. How many pixels

do the web’s images typically have?

A note on single-pixel images

A suspiciously large number of them are 1×1. These s don’t contain any image content

Figure 6.1. Pages that generated at least one request for an image resource.

99.9%

Figure 6.2. Mobile pages whose LCP responsible element has an image.

70%

Figure 6.3. Resources loaded by elements that contain just a single pixel.

Client 1x1 images

Mobile 7.3%

Desktop 7.0%

176. https://web.dev/lcp/

Part I Chapter 6 : Media

208 2022 Web Almanac by HTTP Archive

https://web.dev/lcp/

at all. Instead, they’re being used for two purposes: for layout (as spacer GIFs177) or as tracking

beacons178.

Any newly authored website should use CSS for layout and the Beacon API179 for tracking. Lots

of existing content will use tracking pixels and spacer GIFs forever, but it’s disheartening that

the desktop number here is unchanged from last year180, and that the mobile number has only

shrunk by a tiny amount. Old habits181 die hard182!

Wherever possible, we excluded these not-really-an-image s from our analysis.

Image dimensions

Moving on to images that contain more than one pixel: Most of them are fairly small, but the

majority of pages also contain at least one big image.

“Megapixels” aren’t the most intuitive measure of image size. For perspective, at a 4:3 aspect

ratio, the median pixel count of 0.046MP works out to a 248×186 image.

That may seem small, but the median page includes at least one that contains almost 10

Figure 6.4. Distribution of image pixel counts.

177. https://en.wikipedia.org/wiki/Spacer_GIF
178. https://en.wikipedia.org/wiki/Web_beacon
179. https://developer.mozilla.org/docs/Web/API/Beacon_API
180. https://almanac.httparchive.org/en/2021/media#fig-5
181. https://developers.facebook.com/docs/meta-pixel/implementation/marketing-api#intialize-img
182. https://spacergif.org/stats/

Part I Chapter 6 : Media

2022 Web Almanac by HTTP Archive 209

https://en.wikipedia.org/wiki/Spacer_GIF
https://en.wikipedia.org/wiki/Web_beacon
https://en.wikipedia.org/wiki/Web_beacon
https://developer.mozilla.org/docs/Web/API/Beacon_API
https://almanac.httparchive.org/en/2021/media#fig-5
https://developers.facebook.com/docs/meta-pixel/implementation/marketing-api#intialize-img
https://spacergif.org/stats/
https://almanac.httparchive.org/static/images/2022/media/distribution-of-image-pixel-counts.png
https://almanac.httparchive.org/static/images/2022/media/distribution-of-image-pixel-counts.png

times more pixels than the median element.

At the aspect ratio of 4:3, 0.431MP works out to 758×569. Considering the mobile crawler has

a (typical) 360px-wide viewport, it’s likely that many of these large images end up painted

across almost the whole viewport and at high densities.

In short: most images are small, but most pages include at least one big image.

Image aspect ratios

What sorts of aspect ratios are common on the web?

Figure 6.5. Largest image per page (by pixel count).

Part I Chapter 6 : Media

210 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/media/largest-image-per-page-by-pixel-count.png
https://almanac.httparchive.org/static/images/2022/media/largest-image-per-page-by-pixel-count.png

Much like last year183, most images are landscape-oriented, and there is virtually no difference

between the mobile and desktop numbers. Similar to 2021, this feels like a huge missed

opportunity. As many-an-Instagrammer knows, portrait-oriented images render larger on

mobile screens184 at full-width than either square or landscape-oriented images do, and drive

higher engagement185. Even when the source material is landscape-oriented, we can and should

try to tailor images for mobile screens, using art direction186.

Figure 6.6. Image orientations.

183. https://almanac.httparchive.org/en/2021/media#aspect-ratios
184. https://uxdesign.cc/the-powerful-interaction-design-of-instagram-stories-47cdeb30e5b6
185. https://www.dashhudson.com/blog/best-picture-format-instagram-dimensions
186. https://web.dev/codelab-art-direction/

Part I Chapter 6 : Media

2022 Web Almanac by HTTP Archive 211

https://almanac.httparchive.org/static/images/2022/media/image-orientations.png
https://almanac.httparchive.org/static/images/2022/media/image-orientations.png
https://almanac.httparchive.org/en/2021/media#aspect-ratios
https://uxdesign.cc/the-powerful-interaction-design-of-instagram-stories-47cdeb30e5b6
https://uxdesign.cc/the-powerful-interaction-design-of-instagram-stories-47cdeb30e5b6
https://www.dashhudson.com/blog/best-picture-format-instagram-dimensions
https://www.dashhudson.com/blog/best-picture-format-instagram-dimensions
https://web.dev/codelab-art-direction/

Images’ aspect ratios were clustered around “standard” values, such as 4:3, 3:2 and, in

particular, 1:1 (square). In fact, 40% of all images had one of those three aspect ratios, and the

top 10 aspect ratios accounted for nearly half of all s.

Image color spaces

Images are made of pixels and each pixel has a color. The range of colors that are possible within

a given image is determined by that image’s color space187.

The default color space on the web is sRGB188. CSS colors are specified in sRGB by default

and—unless they’re marked otherwise—browsers assume that the colors in images are sRGB,

too189.

This made sense in a world where approximately all display and capture hardware dealt in

sRGB—or something close to it. But the times, they are a-changin’. In 2022, most phone cameras

capture in wider-than-sRGB gamuts. Also, display hardware capable of richer, outside-of-sRGB

colors is now quite common.

Every modern browser that’s painting to a wide-gamut display will happily paint vibrant,

Figure 6.7. A ranked list of the top ten image aspect ratios (mobile).

Aspect ratio % of images

1:1 32.92%

4:3 3.99%

3:2 2.74%

2:1 1.66%

16:9 1.62%

3:4 1.02%

2:3 0.72%

5:3 0.54%

6:5 0.48%

8:5 0.47%

187. https://en.wikipedia.org/wiki/Color_space
188. https://en.wikipedia.org/wiki/SRGB
189. https://imageoptim.com/color-profiles.html

Part I Chapter 6 : Media

212 2022 Web Almanac by HTTP Archive

https://en.wikipedia.org/wiki/Color_space
https://en.wikipedia.org/wiki/SRGB
https://imageoptim.com/color-profiles.html
https://imageoptim.com/color-profiles.html

outside-of-sRGB colors, if we encode our images using wider than sRGB gamuts. But are we?

In short: No.

In order to tell a browser that an image uses a non-sRGB color space, authors must generally

attach an ICC profile190 to it that describes the image’s color space. Those ICC profiles have

names. We found a little more than 25,000 unique ICC profile names in use on the web. Here

are the top 20:

190. https://en.wikipedia.org/wiki/ICC_profile

Part I Chapter 6 : Media

2022 Web Almanac by HTTP Archive 213

https://en.wikipedia.org/wiki/ICC_profile

Nine out of ten images on the web are untagged, meaning that if they contain RGB data, it will

be interpreted as sRGB. Most of the remaining 10% are explicitly tagged with sRGB or

something similar to it: “c2ci”, “uRGB”, and “c2” are all sRGB variants designed to be minimal and

Figure 6.8. A ranked list of the top twenty ICC color space descriptions (mobile).

ICC profile description sRGB-ish Wide-gamut % of images

Untagged ✓ 90.17%

sRGB IEC61966-2.1 ✓ 3.23%

c2ci ✓ 2.40%

sRGB ✓ 0.88%

Adobe RGB (1998) ✓ 0.76%

uRGB ✓ 0.54%

Display P3 ✓ 0.35%

c2 ✓ 0.33%

Display 0.30%

sRGB built-in ✓ 0.24%

GIMP built-in sRGB ✓ 0.22%

sRGB IEC61966-2-1 black scaled ✓ 0.19%

Generic RGB Profile 0.06%

U.S. Web Coated (SWOP) v2 0.04%

sRGB MozJPEG ✓ 0.02%

Artifex Software sRGB ICC Profile ✓ 0.02%

Dot Gain 20% 0.02%

Coated FOGRA39 (ISO 12647-2:2004) 0.01%

Apple Wide Color Sharing Profile ✓ 0.01%

sRGB v1.31 (Canon) ✓ 0.01%

HD 709-A ✓ 0.01%

Part I Chapter 6 : Media

214 2022 Web Almanac by HTTP Archive

https://github.com/saucecontrol/Compact-ICC-Profiles

lightweight191. Just a little more than 1% of all of the web’s images have been tagged with a

wider-than-sRGB gamut. More succinctly, wide-gamut images are currently about as popular

on the web as grayscale images—which account for 1.16% of the web’s images192.

One caveat: AVIF and PNG allow tagging images with wide-gamut color spaces using format-

specific shorthands, without using ICC profiles. We started down the path of trying to detect

wide-gamut AVIFs and PNGs that don’t use ICC profiles, but accounting for the various ways

they are encoded—and the ways our tooling reported on them—proved a bit too complex to

tackle this year. Maybe next year!

Encoding

Now that we’ve gleaned a bit about the web’s image content, what can we say about how that

content is encoded for delivery?

Format adoption

GIF, JPEG, and PNG have been the standard bitmap image file formats on the web for decades.

That started to change when Chrome shipped support for WebP in 2014. Over the past couple

of years that change has accelerated. Safari and Firefox have now shipped WebP support, and

all three major browsers have shipped at least experimental support for AVIF.

By format, here’s every image resource the crawler saw:

191. https://github.com/saucecontrol/Compact-ICC-Profiles
192. https://docs.google.com/spreadsheets/d/1T5oVAVmcH3sM6R-WwH4ksr2jFtPhuLXs3-iXXoABb3E/edit?pli=1#gid=560546690&range=P5

Part I Chapter 6 : Media

2022 Web Almanac by HTTP Archive 215

https://github.com/saucecontrol/Compact-ICC-Profiles
https://docs.google.com/spreadsheets/d/1T5oVAVmcH3sM6R-WwH4ksr2jFtPhuLXs3-iXXoABb3E/edit?pli=1#gid=560546690&range=P5

At 0.22%, AVIF’s slice of that pie is so small it’s not even labeled on the chart. And while 0.22%

may not sound like a lot, compared to last year, it represents quite a bit of progress.

Slowly, the old formats are making way for the new ones. As they should! The new formats

Figure 6.9. Image format adoption.

Figure 6.10. Image format adoption, year-over-year change.

Part I Chapter 6 : Media

216 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/media/image-format-adoption.png
https://almanac.httparchive.org/static/images/2022/media/image-format-adoption.png
https://almanac.httparchive.org/static/images/2022/media/image-format-adoption-year-over-year-change.png
https://almanac.httparchive.org/static/images/2022/media/image-format-adoption-year-over-year-change.png

outperform the old ones by a significant margin. We’ll get a sense of that shortly.

Bytesizes

How heavy is the typical image on the web?

A median of 10 KB might lead one to think, “Eh, not that heavy!” But, just as when we looked at

pixel counts, while there are many small images, most pages have at least one large one:

Figure 6.11. Distribution of image byte sizes.

Part I Chapter 6 : Media

2022 Web Almanac by HTTP Archive 217

https://almanac.httparchive.org/static/images/2022/media/distribution-of-image-byte-sizes.png
https://almanac.httparchive.org/static/images/2022/media/distribution-of-image-byte-sizes.png

Most pages have at least one image over 100 KB, and the top 10% of pages have at least one

image that weighs almost 1 MB or more.

Bits per pixel

Bytes and pixel counts are interesting on their own, but to get a sense of how compressed the

web’s image data is, we need to put bytes and pixels together to calculate bits per pixel. Doing

this allows us to make apples-to-apples comparisons of the information density of images, even

if those images have different resolutions.

In general, bitmaps on the web decode to eight bits of information per channel, per pixel. So, if

we have an RGB image with no transparency, we can expect a decoded, uncompressed image to

weigh in at 24 bits per pixel193. A good rule of thumb for lossless compression is that it should

reduce file sizes by a 2:1 ratio (which would work out to 12 bits per pixel for our 8-bit RGB

image). The rule of thumb for 1990s-era lossy compression schemes—JPEG and MP3—was a

10:1 ratio (2.4 bits per pixel). It should be noted that, depending on image content and encoding

settings, these ratios vary widely, and modern JPEG encoders like MozJPEG194 typically

outperform this 10:1 target at their default settings. To summarize:

Figure 6.12. Largest image per page (by kilobytes).

193. https://en.wikipedia.org/wiki/Color_depth#True_color_(24-bit)
194. https://github.com/mozilla/mozjpeg

Part I Chapter 6 : Media

218 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/media/largest-image-per-page-by-kilobytes.png
https://almanac.httparchive.org/static/images/2022/media/largest-image-per-page-by-kilobytes.png
https://en.wikipedia.org/wiki/Color_depth#True_color_(24-bit)
https://github.com/mozilla/mozjpeg

So, with all of that as context, here’s how the web’s images stack up:

At 2.3 bits per pixel, the median on mobile almost hits that 10:1 compression ratio

target on the nose. However, around that median, there is a tremendous spread. Let’s break

things down by format in order to learn a bit more.

Figure 6.13. Typical compression ratios and resulting bits/pixel numbers for bitmap RGB data.

Type of bitmap data Expected compression ratio Bits per pixel

Uncompressed RGB 1:1 24 bits/pixel

Losslessly compressed RGB ~2:1 12 bits/pixel

1990s-era lossy RGB ~10:1 2.4 bits/pixel

Figure 6.14. Distribution of image bits/pixel.

Part I Chapter 6 : Media

2022 Web Almanac by HTTP Archive 219

https://almanac.httparchive.org/static/images/2022/media/distribution-of-image-bits-pixel.png
https://almanac.httparchive.org/static/images/2022/media/distribution-of-image-bits-pixel.png

Bits per pixel, by format

Most of these numbers are essentially unchanged from last year195.

We can again see that while PNG technically employs “lossless” compression techniques (which

would lead us to expect 12-16 bits per pixel, depending on whether or not we’re dealing with an

alpha channel), its encoders are generally lossy. They reduce color palettes and introduce

dithering patterns before “losslessly” compressing images in order to boost compression ratios.

And we again see that the typical WebP is one-third lighter, per pixel, than the typical JPEG.

This is about what we would expect: Formal studies196, which, vitally, use matched qualities197,

have estimated that WebP outperforms JPEG by about that same margin.

The only big mover, when compared to last year, is AVIF. The format dropped from 1.5 bits per

pixel last year—less compressed than WebP already!—all the way down to 1.0. This is a huge

reduction, but it wasn’t entirely unexpected. AVIF is a very young format whose encoders have

been quickly iterating, and whose adoption is significantly broadening. I expect next year the

median AVIF will be even more compressed.

Without looking at the quality side of the lossy-compression/quality tradeoff, it’s not possible

to conclude from these results alone that AVIF offers the “best” compression of all of the web-

Figure 6.15. Median bits per pixel by format.

195. https://almanac.httparchive.org/en/2021/media#bits-per-pixel-by-format
196. https://developers.google.com/speed/webp/docs/webp_study
197. https://kornel.ski/en/faircomparison

Part I Chapter 6 : Media

220 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/media/median-bits-per-pixel-by-format.png
https://almanac.httparchive.org/static/images/2022/media/median-bits-per-pixel-by-format.png
https://almanac.httparchive.org/en/2021/media#bits-per-pixel-by-format
https://developers.google.com/speed/webp/docs/webp_study
https://kornel.ski/en/faircomparison

compatible formats. But this year we can conclude that in real-world usage, it exhibits the most

compression. Pair that conclusion with in-the-lab results198, which suggest it also does a good job

of preserving quality, and the picture starts looking pretty good—pun intended.

AVIF’s browser support199 also took a huge leap this year. All of this is to say, if you’re sending

bitmap images across the web—as you may recall, 99.9% of pages do—you should at least

consider sending AVIFs.

GIFs, animated and not

At the other end of the compression chart is our old friend GIF. It comes out looking particularly

bad, but it’s not all the format’s fault. One of the reasons this 35-year-old format is still in

common use is its ability to do animation, and we have not accounted for the number of frames

when calculating the number of pixels. This raises a few interesting questions. First, how many

GIFs are animated?

I found this surprisingly low. Ever since PNG achieved universal support in 2006200, there hasn’t

been a good reason to ship a non-animated GIF201. The word “GIF” has become synonymous with

its only justifiable use case: Being a portable, universal format for short, silent, autoplaying,

looping animation. One wonders whether all of these non-animated GIFs are legacy content, or

whether there are a significant number of new, non-animated GIFs being created and published

to the web—I hope not!

Now that we’ve separated out the animated GIFs from the non-animated ones, we can also ask:

What are the compression characteristics of non-animated vs animated GIFs?

Figure 6.16. Percentage of GIFs that were animated on mobile.

29%

198. https://netflixtechblog.com/avif-for-next-generation-image-coding-b1d75675fe4
199. https://caniuse.com/avif
200. https://caniuse.com/?search=png
201. https://en.wikipedia.org/wiki/Portable_Network_Graphics#Compared_to_GIF

Part I Chapter 6 : Media

2022 Web Almanac by HTTP Archive 221

https://netflixtechblog.com/avif-for-next-generation-image-coding-b1d75675fe4
https://caniuse.com/avif
https://caniuse.com/?search=png
https://en.wikipedia.org/wiki/Portable_Network_Graphics#Compared_to_GIF
https://en.wikipedia.org/wiki/Portable_Network_Graphics#Compared_to_GIF

Once we remove animated GIFs from the equation, the format looks much better. At a median

of 3.5 bits per pixel, GIFs are smaller, pixel-for-pixel, than PNGs. This likely reflects the kinds of

content that each format is asked to compress: GIFs, by design, can only contain 256 colors and

binary transparency. PNGs can contain 16.7 million colors plus a full alpha channel.

Before we move on from GIFs, I do have one more question about them: How many frames do

animated GIFs typically have?

Figure 6.17. GIF bits per pixel: animated vs. non-animated.

Part I Chapter 6 : Media

222 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/media/gif-bits-per-pixel-animated-vs-non-animated.png
https://almanac.httparchive.org/static/images/2022/media/gif-bits-per-pixel-animated-vs-non-animated.png

A majority of animated GIFs come in at a dozen frames or less. Incidentally, the most frames we

found in a GIF was 15,341. At 30 FPS, that would work out to an eight-and-a-half-minute GIF.

The mind reels.

Embedding

Now that we have a sense of how the web’s image resources have been encoded, what can we

say about how they are embedded on web pages?

Figure 6.18. Distribution of animated GIF frame counts.

Part I Chapter 6 : Media

2022 Web Almanac by HTTP Archive 223

https://almanac.httparchive.org/static/images/2022/media/distribution-of-animated-gif-frame-counts.png
https://almanac.httparchive.org/static/images/2022/media/distribution-of-animated-gif-frame-counts.png

Lazy-loading

The biggest story last year was the rapid adoption of lazy-loading. While the pace of adoption

has slowed, it’s still proceeding at a remarkable rate. Last June, 17% of pages were using lazy-

loading. This year, we saw a 1.4x increase. Now 24% of pages are using lazy-loading.

Given the vast amount of legacy content on the web, going from zero adoption to just about

one-quarter of crawled pages within two years is a remarkable feat, and shows just how much

demand there was for native lazy-loading.

And indeed, just like last year, it seems pages are using lazy-loading a bit too much.

Lazy-loading LCP elements makes LCP scores much worse. It’s an anti-pattern that makes

pages slower. Seeing that one-in-ten LCP s are lazy-loaded is disheartening. Seeing that

this anti-pattern has gotten slightly more common since last year is even more so.

Figure 6.19. Adoption of loading=lazy on .

Figure 6.20. Percentage of LCP s that use native lazy-loading on mobile.

9.8%

Part I Chapter 6 : Media

224 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/media/adoption-of-loading-lazy-on-img.png
https://almanac.httparchive.org/static/images/2022/media/adoption-of-loading-lazy-on-img.png

alt text

Images embedded with elements are supposed to be contentful. That is to say: They’re

not just decorative, and they should contain something meaningful. According to both WCAG

requirements202 and the HTML spec203, all contentful images must have alternative text, and that

alternative text should usually be supplied by the alt attribute.

This result means that almost half of all s are obviously inaccessible. If the in-depth

analysis from this year’s accessibility chapter is any indication, a large chunk of the s

that do have non-blank alt attributes aren’t all that accessible, either.

We can and must do better.

srcset

Prior to lazy-loading, the biggest thing to happen to s on the web was a suite of features

for “responsive images,” which allowed images to tailor themselves to fit within responsive

designs. First shipped in 2014, the srcset attribute, sizes attribute, and the <picture>
element have allowed authors to mark up adaptable resources for almost a decade now. How

much and how well are we using these features?

Let’s start with the srcset attribute, which allows authors to give the browser a menu of

resources to choose from, depending on context.

One-third of pages use srcset , but two-thirds don’t. Given the prevalence of fluid grids

within responsive designs in 2022, I suspect there are a lot of pages that aren’t using srcset
that should be.

Figure 6.21. Percentage of images that had a non-blank alt attribute.

54%

Figure 6.22. Percentage of pages using the srcset attribute.

34%

202. https://www.w3.org/WAI/WCAG22/Understanding/non-text-content
203. https://html.spec.whatwg.org/multipage/images.html#alt

Part I Chapter 6 : Media

2022 Web Almanac by HTTP Archive 225

https://www.w3.org/WAI/WCAG22/Understanding/non-text-content
https://www.w3.org/WAI/WCAG22/Understanding/non-text-content
https://html.spec.whatwg.org/multipage/images.html#alt

The srcset attribute allows authors to describe resources using one of two descriptors: x
descriptors that specify which screen density a resource is appropriate for, and w descriptors,

which instead give the browser the resource’s width in pixels. Used in conjunction with the

sizes attribute, w descriptors allow browsers to select a resource appropriate for both fluid

layout widths and variable screen densities.

The x descriptor came first, and is simpler to reason about. For years it enjoyed more

popularity than the more powerful w descriptor. It warms my heart that nearly a decade in, the

world has come around to w descriptors.

sizes

I mentioned earlier that w descriptors should be used in conjunction with sizes attributes.

How well are we using sizes ? In two words: Not very.

The sizes attribute is supposed to be a hint to the browser about the eventual layout size of

the image, usually relative to the viewport width. There are many variables that can affect an

image’s layout width. The sizes attribute is explicitly supposed to be a hint, and so a little

inaccuracy is OK and even expected. But if the sizes attribute is more-than-a-little

inaccurate, it can affect resource selection, causing the browser to load an image to fit the

sizes width when the actual layout width of the image is significantly different.

Figure 6.23. srcset descriptor usage.

Part I Chapter 6 : Media

226 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/media/srcset-descriptor-usage.png
https://almanac.httparchive.org/static/images/2022/media/srcset-descriptor-usage.png

So how accurate are our sizes ?

While many sizes attributes are entirely accurate, the median sizes attribute is 13% too-

large on mobile and 19% too-large on desktop. That might be OK, given the hint-like nature of

the feature, but as you can see, the p75 and p90 numbers aren’t pretty and lead to bad

outcomes.

On desktop, where the difference between the default sizes value (100vw) and the actual

layout width of the image is likely to be larger than on mobile, one-in-five sizes attributes is

inaccurate enough to cause browsers to pick a suboptimal resource from the srcset . These

errors add up.

Figure 6.24. Distribution of errors.

Figure 6.25. sizes attributes that were inaccurate enough to affect srcset selection on

desktop. On mobile, it’s 14%.

19%

Part I Chapter 6 : Media

2022 Web Almanac by HTTP Archive 227

https://almanac.httparchive.org/static/images/2022/media/distribution-of-img-sizes-errors.png
https://almanac.httparchive.org/static/images/2022/media/distribution-of-img-sizes-errors.png

We estimate that one-quarter of desktop pages are loading more than 83 KB of extra image

data, based purely on bad sizes attributes. That is to say: A better, smaller resource is there

for the picking in the srcset , but because the sizes attribute is so erroneous, the browser

doesn’t pick it. Additionally, 10% of desktop pages that use sizes load more than a half-

megabyte of excess image data because of bad sizes attributes!

Note: Our crawlers didn’t actually load the correct resources, so the numbers here are estimates, based

in part on the byte sizes of the incorrect resources, which the crawlers actually did load.

In the short term, individual developers can and should use RespImageLint204 to audit and fix

their badly broken sizes attributes and prevent this kind of waste.

In the medium term, where possible, the web platform needs to provide better tooling. For

many developers, authoring—and maintaining!—accurate sizes attributes has proven to be

too hard. A proposal that would allow automatic sizes for lazy-loaded images205 is on the table.

Let’s hope it progresses in 2023.

The lazysizes.js library206 has already proven the appetite for this sort of solution: 10% of

sizes attributes currently have the value “auto” before JavaScript runs and are later

rewritten to perfectly accurate values by lazysizes.js before it lazy-loads the image. Note that,

because it relies on lazy-loading, this pattern is not appropriate for LCP images or any

Figure 6.26. Excess kilobytes loaded per page due to inaccurate sizes .

204. https://ausi.github.io/respimagelint/
205. https://github.com/whatwg/html/pull/8008
206. https://github.com/aFarkas/lazysizes

Part I Chapter 6 : Media

228 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/media/excess-kilobytes-loaded-per-page-due-to-inaccurate-sizes.png
https://almanac.httparchive.org/static/images/2022/media/excess-kilobytes-loaded-per-page-due-to-inaccurate-sizes.png
https://ausi.github.io/respimagelint/
https://github.com/whatwg/html/pull/8008
https://github.com/aFarkas/lazysizes
https://docs.google.com/spreadsheets/d/1T5oVAVmcH3sM6R-WwH4ksr2jFtPhuLXs3-iXXoABb3E/edit#gid=232511628
https://docs.google.com/spreadsheets/d/1T5oVAVmcH3sM6R-WwH4ksr2jFtPhuLXs3-iXXoABb3E/edit#gid=232511628
https://docs.google.com/spreadsheets/d/1T5oVAVmcH3sM6R-WwH4ksr2jFtPhuLXs3-iXXoABb3E/edit#gid=232511628

elements that are above the fold. For these images, the only way forward for performant

responsive loading is a well-authored sizes attribute.

<picture>

The last responsive image feature to land in 2014 was the <picture> element. While

srcset hands browsers a menu of resources to choose from, the <picture> element allows

authors to take charge, giving browsers an explicit set of instructions about which child

<source> element to load a resource from.

The <picture> element is used far less than srcset .

This is up a couple ticks from last year, but the fact that there are almost five pages that use

srcset for every one page that uses <picture> suggests that either <picture> ’s use

cases are more niche, or it’s more difficult to deploy—or both.

What are people using <picture> for?

The <picture> element gives authors two ways to switch between resources. Type-switching

allows authors to provide cutting-edge image formats to browsers that support them and

fallback formats for everyone else. Media-switching facilitates art direction207, allowing authors

to switch between various <source> s based on media conditions.

Figure 6.27. Percentage of mobile pages that use the <picture> element.

7.7%

207. https://www.w3.org/TR/respimg-usecases/#art-direction

Part I Chapter 6 : Media

2022 Web Almanac by HTTP Archive 229

https://www.w3.org/TR/respimg-usecases/#art-direction

Usage is split reasonably evenly. Interestingly, type-switching has closed the gap since last

year208. This may be related to the increasing popularity of next-generation image formats like

AVIF and WebP.

Layout

Part of what makes responsive images difficult is that it asks us to think about how s will

be laid out, while writing HTML. Which leads us to a basic question: How are s laid out?

We already saw how the web’s image resources size up. But before they can be shown to a user,

embedded images must be placed within a layout and potentially squished or stretched to fit it.

Throughout this analysis it will be useful to keep in mind the crawlers’ viewports: The desktop

crawler was 1376px-wide, with a DPR of 1x; the mobile crawler was 360px-wide, with a DPR of

3x.

Layout widths

The simplest question here might be: How wide do the web’s images end up when painted to

the page?

Figure 6.28. <picture> feature usage.

208. https://almanac.httparchive.org/en/2021/media#fig-23

Part I Chapter 6 : Media

230 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/media/picture-feature-usage.png
https://almanac.httparchive.org/static/images/2022/media/picture-feature-usage.png
https://almanac.httparchive.org/en/2021/media#fig-23
https://almanac.httparchive.org/en/2021/media#fig-23

Just like the resources that they embed, most of the web’s images end up pretty small within

layouts. Similarly, most pages have at least one fairly large image.

More than 75% of mobile pages have at least one image that takes up more than 75vw worth of

Figure 6.29. Distribution of layout widths.

Figure 6.30. Widest per page (layout width).

Part I Chapter 6 : Media

2022 Web Almanac by HTTP Archive 231

https://almanac.httparchive.org/static/images/2022/media/distribution-of-img-layout-widths.png
https://almanac.httparchive.org/static/images/2022/media/distribution-of-img-layout-widths.png
https://almanac.httparchive.org/static/images/2022/media/widest-img-per-page-layout-width.png
https://almanac.httparchive.org/static/images/2022/media/widest-img-per-page-layout-width.png

viewport. From there, things more or less top out, rising slowly until a significant number

(somewhere between 10-25%) of pages have an image that ends up wider than the viewport.

That’s likely because the author has not included a viewport meta tag209 and the desktop-sized

page is being scaled down to fit within the mobile screen.

It’s interesting to contrast this with the desktop layout widths, which don’t top out at all. They

just keep growing. I find it surprising that more than 10% of pages on desktop included an image

that was wider than the crawler’s 1360px viewport, presumably triggering horizontal

scrollbars.

Intrinsic vs extrinsic sizing

Why do the web’s images end up at these layout sizes? There are many ways to scale an image

with CSS. But how many images are being scaled with any CSS at all?

Images, like all “replaced elements”210, have an intrinsic size211. By default—in the absence of a

srcset controlling their density or any CSS rules controlling their layout width—images on

the web display at a density of 1x. Plop a 640×480 image into an and, by default,

that will be laid out with a width of 640 CSS pixels.

Authors may apply extrinsic sizing to an image’s height, width, or both. If an image has been

extrinsically sized in one dimension (e.g., with a width: 100%; rule), but left to its intrinsic

size in the other (height: auto; or no rule at all), it will scale proportionally, using its

intrinsic aspect ratio.

Complicating things further, some CSS rules allow s to appear at their intrinsic

dimensions, unless they violate some constraint. For instance, an element with a max-
width: 100%; rule will be intrinsically sized, unless that intrinsic size is larger than the size of

the element’s container, in which case it will be extrinsically scaled down to fit.

With all of that explanation out of the way, here’s how the web’s elements are sized for

layout:

209. https://developer.mozilla.org/docs/Web/HTML/Viewport_meta_tag
210. https://developer.mozilla.org/docs/Web/CSS/Replaced_element
211. https://developer.mozilla.org/docs/Glossary/Intrinsic_Size

Part I Chapter 6 : Media

232 2022 Web Almanac by HTTP Archive

https://developer.mozilla.org/docs/Web/HTML/Viewport_meta_tag
https://developer.mozilla.org/docs/Web/CSS/Replaced_element
https://developer.mozilla.org/docs/Glossary/Intrinsic_Size

The majority of images have extrinsic widths; the majority of images have intrinsic heights. The

“both” category for width—representing images with either a max-width or min-width
sizing constraint—is also fairly popular. Leaving images to their intrinsic widths is far less

popular—and slightly less popular than it was last year212.

height , width , and Cumulative Layout Shifts

Any whose layout size is dependent on its intrinsic width risks triggering a Cumulative

Layout Shift213. In essence, such images risk being laid out twice: Once when the page’s DOM and

CSS have been processed, and then a second time when they finally finish loading and their

intrinsic dimensions are known.

As we’ve just seen, extrinsically scaling images to fit a certain width while leaving the height

(and aspect ratio) intrinsic is very common. To fight the resulting plague of layout shifts, a

couple of years ago browsers decided to change the way that the height and width
attributes on work. These days, consistently setting the height and width
attributes to reflect the aspect ratio of the resource is a universally recommended best

practice, which allows authors to tell the browser the intrinsic dimensions of an image resource

before it loads.

Figure 6.31. Intrinsic and extrinsic image sizing.

212. https://almanac.httparchive.org/en/2021/media#intrinsic-vs-extrinsic-sizing
213. https://web.dev/cls/

Part I Chapter 6 : Media

2022 Web Almanac by HTTP Archive 233

https://almanac.httparchive.org/static/images/2022/media/intrinsic-and-extrinsic-image-sizing.png
https://almanac.httparchive.org/static/images/2022/media/intrinsic-and-extrinsic-image-sizing.png
https://almanac.httparchive.org/en/2021/media#intrinsic-vs-extrinsic-sizing
https://web.dev/cls/
https://web.dev/cls/
https://developer.mozilla.org/docs/Web/Media/images/aspect_ratio_mapping#a_new_way_of_sizing_images_before_loading_completes
https://developer.mozilla.org/docs/Web/Media/images/aspect_ratio_mapping#a_new_way_of_sizing_images_before_loading_completes
https://developer.mozilla.org/docs/Web/Media/images/aspect_ratio_mapping#a_new_way_of_sizing_images_before_loading_completes
https://developer.mozilla.org/docs/Web/Media/images/aspect_ratio_mapping#a_new_way_of_sizing_images_before_loading_completes
https://developer.mozilla.org/docs/Web/Media/images/aspect_ratio_mapping#a_new_way_of_sizing_images_before_loading_completes

Unfortunately, we have a long way to go before we get to universal adoption.

Delivery

Finally, let’s take a look at how images are delivered over the network.

Cross-domain image hosts

How many images are being delivered from a different domain than the document they’re

embedded on? A majority of them, including 3.6 percentage points more than last year214.

The fact that a growing majority of images are being delivered across domains underscores

Figure 6.32. Percentage of elements on mobile that have both height and width
attributes set.

28%

Figure 6.33. Image hosts: cross vs same domain.

214. https://almanac.httparchive.org/en/2021/media#cross-origin-image-hosts

Part I Chapter 6 : Media

234 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/en/2021/media#cross-origin-image-hosts
https://almanac.httparchive.org/static/images/2022/media/image-hosts-cross-vs-same-domain.png
https://almanac.httparchive.org/static/images/2022/media/image-hosts-cross-vs-same-domain.png

how hard images are to get right215, and the benefits of enlisting an image CDN216 to handle your

media for you.

And now let’s turn our attention to ’s younger and more dynamic sibling: <video> .

Video

The <video> element shipped in 2010, and has been the best and—since the demise of

plugins like Flash and Silverlight—only way to embed video content on websites.

Over the last few years, I have had the sense that web content is shifting. Whereas still images

(Flickr, Instagram) once ruled, I’m increasingly seeing moving ones (TikTok) dominate. Is this

sense borne out in the Web Almanac’s dataset? How are we using <video> on the web?

Video adoption

Usage of the <video> element continues to rise:

On mobile, <video> usage has risen from 4.3% of pages in June 2021 to 5% of pages in June

Figure 6.34. Adoption of <video> over time.

215. https://css-tricks.com/images-are-hard/
216. https://web.dev/image-cdns/

Part I Chapter 6 : Media

2022 Web Almanac by HTTP Archive 235

https://css-tricks.com/images-are-hard/
https://web.dev/image-cdns/
https://almanac.httparchive.org/static/images/2022/media/adoption-of-video-over-time.png
https://almanac.httparchive.org/static/images/2022/media/adoption-of-video-over-time.png

2022. One in 20 pages now include a <video> element, representing an increase of 18% year-

over-year. I don’t expect the web to contain as many <video> s as s anytime soon, but

there are an increasing number of <video> s every year!

Video durations

How long are those videos? Not very!

Nine out of ten videos are less than two minutes long. And more than half are under 30

seconds. Almost a quarter of videos are under 10 seconds. Perhaps these are GIFs in <video>
clothing?

Format adoption

What formats are sites delivering in 2022? MP4, with its universal support story217, is king:

Figure 6.35. Video durations.

217. https://caniuse.com/mpeg4

Part I Chapter 6 : Media

236 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/media/video-durations.png
https://almanac.httparchive.org/static/images/2022/media/video-durations.png
https://caniuse.com/mpeg4

But MP4’s numbers are a couple ticks down from last year218, and we continue to see files with

blank extensions, .ts files, and .m4s files gaining ground. These files are delivered when a

<video> employs adaptive bitrate streaming using either HLS219 or MPEG-DASH220.

It’s encouraging to see responsive video delivery using adaptive streaming on the rise. At the

same time, we look forward to the web platform offering a simple, declarative solution to

adaptive videos221 that doesn’t rely on JavaScript.

Embedding

The <video> element offers a number of attributes that allow authors to control how the

video will be loaded and presented on the page. Here they are, ranked by usage:

Figure 6.36. Top extensions of files with a video MIME type.

218. https://almanac.httparchive.org/en/2021/media#fig-29
219. https://en.wikipedia.org/wiki/HTTP_Live_Streaming
220. https://en.wikipedia.org/wiki/Dynamic_Adaptive_Streaming_over_HTTP
221. https://github.com/whatwg/html/issues/6363

Part I Chapter 6 : Media

2022 Web Almanac by HTTP Archive 237

https://almanac.httparchive.org/static/images/2022/media/top-extensions-of-files-with-a-video-mime-type.png
https://almanac.httparchive.org/static/images/2022/media/top-extensions-of-files-with-a-video-mime-type.png
https://almanac.httparchive.org/en/2021/media#fig-29
https://en.wikipedia.org/wiki/HTTP_Live_Streaming
https://en.wikipedia.org/wiki/Dynamic_Adaptive_Streaming_over_HTTP
https://github.com/whatwg/html/issues/6363
https://github.com/whatwg/html/issues/6363

There are a number of things to unpack here.

First, autoplay overtook preload to become the most popular attribute this year. We also

see playsinline , muted , and loop increasing in popularity. Perhaps an increasing number

of people are using the <video> element to replace animated GIFs? If so, good!

The fact that only 12% of <video> s have width attributes and just 0.4% (!) have height
attributes means that most <video> elements are susceptible to the same kinds of CLS222

problems we saw with elements which lack these attributes. Help the browser help you

and add these attributes!

Additionally, the fact that fewer than one-in-ten <video> elements has a controls
attribute suggests a significant number of people are using players that provide their own user

interface for interacting with the video.

Figure 6.37. <video> attribute usage.

222. https://web.dev/cls/

Part I Chapter 6 : Media

238 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/media/video-attribute-usage.png
https://almanac.httparchive.org/static/images/2022/media/video-attribute-usage.png
https://web.dev/replace-gifs-with-videos/
https://web.dev/replace-gifs-with-videos/
https://web.dev/cls/

Usage of preload deserves some more investigation.

preload

The preload attribute has seen declining usage over the past couple of years.

Why? I like to think it is authors getting out of the browser’s way.

Different browsers do different things when it comes to deciding when to load video data. The

preload attribute is a way for authors to step in and have more control over that process.

That could include explicitly asking the browser not to preload anything with none ; asking the

browser to preload just the metadata ; or asking the browser to preload, using either the

auto or empty values. It’s interesting, and perhaps heartening, to see authors exert less

control over video loading during the past three years. Browsers know the most about their

users’ contexts; not including the preload attribute at all lets them do what they think is best.

src and <source>

The src attribute is only present on 8-9% of <video> elements. Many of the rest use

multiple <source> children, allowing authors to instead supply multiple alternate video

resources in alternate formats.

Figure 6.38. <video preload> attribute value usage.

Part I Chapter 6 : Media

2022 Web Almanac by HTTP Archive 239

https://almanac.httparchive.org/static/images/2022/media/video-preload-attribute-value-usage.png
https://almanac.httparchive.org/static/images/2022/media/video-preload-attribute-value-usage.png

How many <source> children do <video> elements have? Most have just one, and very few

use multiple.

Conclusion

So there you have it, a snapshot of the state of media on the web in 2022. We’ve seen just how

pervasive images and – increasingly – videos are on the web, and have gained some insight into

how the web’s images and videos are encoded and embedded. The most exciting developments

this year are the accelerating adoption of AVIF and the ever-increasing adoption of both lazy-

loading and adaptive bitrate streaming.

There were, however, some frustrating aspects, including the almost complete lack of wide-

gamut color spaces; the undying zombie format that is GIF (in both its animated and, more

surprisingly, non-animated forms); and the way that both the sizes attribute and lazy-loading

– two features designed for performance – are (through improper use) hurting performance on

a significant number of pages.

Here’s to more effective visual communication on the web in 2023!

Figure 6.39. Number of <source> s per <video> .

Part I Chapter 6 : Media

240 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/media/number-of-sources-per-video.png
https://almanac.httparchive.org/static/images/2022/media/number-of-sources-per-video.png

Authors

Eric Portis

@etportis eeeps https://ericportis.com

Eric Portis is a Web Platform Advocate at Cloudinary223.

Akshay Ranganath

@rakshay akshay-ranganath akshayranganath https://akshayranganath.github.io/

Akshay Ranganath is a Sr. Solution Architect at Cloudinary224 and likes to work on

CDN/WebPerf challenges.

223. https://cloudinary.com/
224. https://cloudinary.com/

Part I Chapter 6 : Media

2022 Web Almanac by HTTP Archive 241

https://twitter.com/etportis
https://github.com/eeeps
https://ericportis.com/
https://cloudinary.com/
https://twitter.com/rakshay
https://github.com/akshay-ranganath
https://www.linkedin.com/in/akshayranganath/
https://akshayranganath.github.io/
https://cloudinary.com/

242 2022 Web Almanac by HTTP Archive

Part I Chapter 7

WebAssembly

Written by Colin Eberhardt
Reviewed by Ben Smith and Ingvar Stepanyan
Analyzed by Jamie Macdonald
Edited by Barry Pollard

Introduction

WebAssembly—or Wasm—is a relative newcomer to the family of web technologies

(JavaScript, HTML, CSS), becoming an officially recognized W3C standard in December 2019.

WebAssembly introduces a new runtime into the browser, one which works alongside, and in

close collaboration, with the JavaScript runtime. It is relatively lightweight in comparison, with

a small instruction set and a strict isolation model (WebAssembly has no I/O by default). One of

the primary motivators for developing WebAssembly was to provide a compilation target for a

wide range of programming languages (C++, Rust, Go etc.), allowing developers to write new

web applications, or port existing applications, with a wider toolset.

High-profile examples of WebAssembly include its use within Google Earth225, where the C++

desktop application is now available within the browser, Figma226, a browser-based design tool

225. https://blog.chromium.org/2019/06/webassembly-brings-google-earth-to-more.html
226. https://www.figma.com/blog/webassembly-cut-figmas-load-time-by-3x/

Part I Chapter 7 : WebAssembly

2022 Web Almanac by HTTP Archive 243

https://blog.chromium.org/2019/06/webassembly-brings-google-earth-to-more.html
https://www.figma.com/blog/webassembly-cut-figmas-load-time-by-3x/

that enjoyed significant performance improvements using this technology, and most recently

Photoshop227 which uses WebAssembly for similar reasons.

Methodology

WebAssembly is a compilation target, distributed as binary modules. For this reason, we face a

number of challenges when analyzing its usage on the web. The 2021 Web Almanac, which is

the first edition that included WebAssembly, includes a detailed section on the methodology

used228, and related caveats. The findings here, in the 2022 edition, followed the same

methodology. The only enhancement added is a mechanism for determining the language used

to author WebAssembly modules. The accuracy of that analysis is covered in more detail in the

respective section.

How widely is WebAssembly being used?

We found 3,204 confirmed WebAssembly requests on desktop and 2,777 on mobile. Those

modules are used across 2,524 domains on desktop and 2,216 domains on mobile, which

represents 0.06% and 0.04% of all domains on desktop and mobile correspondingly.

This represents a modest drop in the number of modules we discovered in the crawl, a

reduction of 16% for desktop and 12% mobile requests. This doesn’t necessarily mean

WebAssembly is in decline, when interpreting this change it is worth noting the following:

• While you can use WebAssembly to create all sorts of web-based content, its main

benefit is found in more complex line-of-business applications with large codebases,

that are often many years old (e.g. Google Earth, Photoshop, AutoCAD). These web

’apps’ are not as numerous as the websites, and are not always available to the

Almanac crawl, which is primarily based on home pages where WebAssembly may

be less prevalent.

• As we shall see in a later section, much of the WebAssembly usage we see comes

from a relatively small number of third-party libraries. As a result, a small change in

any one of those libraries will have a significant impact on the number of modules

we find.

We found slightly fewer (-13%) WebAssembly modules served to mobile browsers. This isn’t a

reflection on the WebAssembly capabilities of mobile browsers, which generally have excellent

227. https://web.dev/ps-on-the-web/
228. https://almanac.httparchive.org/en/2021/webassembly#methodology

Part I Chapter 7 : WebAssembly

244 2022 Web Almanac by HTTP Archive

https://web.dev/ps-on-the-web/
https://almanac.httparchive.org/en/2021/webassembly#methodology
https://almanac.httparchive.org/en/2021/webassembly#methodology

support. Rather, it is likely due to the standard practice of progressive enhancement229, where in

these cases the more advanced features that require WebAssembly are not supported for

mobile users.

By hashing the WebAssembly modules we can determine how many of these 3,204

modules—on desktop—are unique. By de-duplicating modules, the total number reduces by

roughly a factor of 10, with 383 unique modules served to desktop browsers, and 310 to

mobile. This indicates a significant amount of re-use—different websites making use of the

same WebAssembly code, most likely through shared modules.

A significant proportion of wasm requests are cross-origin, further reinforcing the notion that

they are re-used. Notably this has increased significantly from last year (67.2% vs 55.2%).

Figure 7.1. Number of Wasm responses.

229. https://developer.mozilla.org/docs/Glossary/Progressive_Enhancement

Part I Chapter 7 : WebAssembly

2022 Web Almanac by HTTP Archive 245

https://developer.mozilla.org/docs/Glossary/Progressive_Enhancement
https://almanac.httparchive.org/static/images/2022/webassembly/counts.png
https://almanac.httparchive.org/static/images/2022/webassembly/counts.png

These WebAssembly modules differ considerably in size, with the smallest being just a few

kilobytes, and the largest weighing in at 7.3 megabytes. Looking in more detail, at the

uncompressed size, we see that the median (50th percentile) size is 835KBytes.

The smallest of WebAssembly modules are likely being used for quite specific functionality, for

example polyfilling browser capabilities, or simple encryption tasks. The larger modules are

likely entire applications that are compiled to WebAssembly.

Figure 7.2. Cross-origin WebAssembly usage.

Part I Chapter 7 : WebAssembly

246 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/webassembly/cross_domain.png
https://almanac.httparchive.org/static/images/2022/webassembly/cross_domain.png

Clearly WebAssembly isn’t widely used, and rather than seeing a growth in usage, we are seeing

a modest contraction.

Figure 7.3. Uncompressed response sizes.

Part I Chapter 7 : WebAssembly

2022 Web Almanac by HTTP Archive 247

https://almanac.httparchive.org/static/images/2022/webassembly/uncompressed_resp_sizes.png
https://almanac.httparchive.org/static/images/2022/webassembly/uncompressed_resp_sizes.png

What is WebAssembly being used for?

• Amazon IVS (Amazon Interactive Video Service)230 - Here WebAssembly is likely

being used as a video codec, allowing consistent video decoding independent of the

codec support of the user’s browser

• Hyphenopoly231 - This in an npm module that provides a polyfill for CSS hyphenation.

The core algorithm is shipped as a WebAssembly module, giving a small footprint

and consistent performance

• Blazor232 - Microsoft Blazor is a platform—runtime and UI library—that supports the

development of web applications using the .NET platform and C#.

• ArcGIS233 - A comprehensive suite of tools for building interactive mapping

applications. Performance is a primary concern for the ArcGIS team, and they

employ various technologies such as WebGL to achieve this. Specifically,

WebAssembly is used to enable fast client-side projections.

• CanvasKit234 - This library provides more advanced capabilities than the standard

Canvas2D API. It is implemented via Skia, a graphics library written in C++, which is

Figure 7.4. Popular WebAssembly libraries.

230. https://aws.amazon.com/ivs/
231. https://mnater.github.io/Hyphenopoly/
232. https://dotnet.microsoft.com/en-us/apps/aspnet/web-apps/blazor
233. https://developers.arcgis.com/javascript/latest/
234. https://skia.org/docs/user/modules/canvaskit/

Part I Chapter 7 : WebAssembly

248 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/webassembly/popular_by_name.png
https://almanac.httparchive.org/static/images/2022/webassembly/popular_by_name.png
https://aws.amazon.com/ivs/
https://mnater.github.io/Hyphenopoly/
https://dotnet.microsoft.com/en-us/apps/aspnet/web-apps/blazor
https://developers.arcgis.com/javascript/latest/
https://skia.org/docs/user/modules/canvaskit/

compiled to WebAssembly allowing execution in the browser.

• Tableau235 - A popular tool for building interactive visualizations. It is not clear

whether WebAssembly is used as part of their core product, or whether it is just

being used for the specific dashboards that were found as part of the crawl.

• Draco236 - A library for compressing and decompressing 3D geometric meshes and

point clouds. It is written in C++, with the WebAssemby building allowing its use

within the browser.

• Xat237 - A social media site. It is unclear what they are using WebAssembly for.

• Hewlett Packard Enterprise238 - It is unclear what they are using WebAssembly for.

From looking at the popular WebAssembly libraries we can see that its usage is quite targeted,

often being used for specific number-crunching tasks, or leveraging large and mature C++

codebases, bringing their capabilities to the web without the need to port to JavaScript.

What languages are people using?

WebAssembly is a binary format, and as a result, much of the information in the

source—programming language, application structure, variable names—is obfuscated or

entirely lost in the compilation process.

However, modules often have exports and imports, which name functions within the hosting

environment—the JavaScript runtime within the browser—that describe the module interface.

Most WebAssembly toolchains create a small amount of JavaScript code, for the purposes of

’binding’, making it easier to integrate modules into JavaScript applications. These bindings

often have recognizable function names which are present in the modules exports or imports,

giving a reliable mechanism for identifying the language that was used to author the module.

We enhanced the wasm-stats239 project, which provides WebAssembly-specific analysis to the

crawler, adding code which inspects exports / imports to identify common patterns that provide

an indication of the language used to author a given module. As an example, if a module imports

a module names wbindgen this is a reference to code generated by wasm-bindgen240 and a

clear indicator that the module was written in Rust.

In some cases, the export / import names are minified, making it harder to identify the source

235. https://www.tableau.com/
236. https://google.github.io/draco/
237. https://xat.com/
238. https://www.hpe.com/us/en/home.html
239. https://github.com/HTTPArchive/wasm-stats
240. https://crates.io/crates/wasm-bindgen

Part I Chapter 7 : WebAssembly

2022 Web Almanac by HTTP Archive 249

https://www.tableau.com/
https://google.github.io/draco/
https://xat.com/
https://www.hpe.com/us/en/home.html
https://github.com/HTTPArchive/wasm-stats
https://crates.io/crates/wasm-bindgen

language. However, Emscripten (a C++ toolchain), has a distinctive convention for minified

names, meaning that we can be relatively confident that modules exhibiting this pattern were

generated using Emscripten.

Looking at the results, we found that, on desktop, 72.8% of modules were very likely created

using Emscripten, and as a result are most likely written in C++. Next most popular is Rust at

6.0%, then Blazor (C#) at 3.5%. We also found a small number of modules written in Go.

Notably, 16.9% of modules didn’t have an identifiable language. AssemblyScript241 is a popular

WebAssembly-specific language which doesn’t provide any obvious clues in the modules it

produces. We know that Hypehnopoly—which represents 8.2% of all modules—uses

AssemblyScript, and it accounts for almost half of these ’unidentified’ modules.

It is interesting to contrast these results with the State of WebAssembly 2022 survey242, where

Rust was the most frequently used language. However, a significant number of respondents to

that survey were using WebAssembly for non-browser based applications.

What features are being used?

The initial release of WebAssembly was considered an MVP. In common with other web

Figure 7.5. WebAssembly language usage.

241. https://www.assemblyscript.org/
242. https://blog.scottlogic.com/2022/06/20/state-of-wasm-2022.html

Part I Chapter 7 : WebAssembly

250 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/webassembly/language_usage.png
https://almanac.httparchive.org/static/images/2022/webassembly/language_usage.png
https://www.assemblyscript.org/
https://blog.scottlogic.com/2022/06/20/state-of-wasm-2022.html

standards, it is continually evolving under the governance of the World Wide Web Consortium

(W3C). This year saw the announcement of the WebAssembly v2 draft243, adding a number of

new features.

We looked at the Post-MVP features that are being used, finding that sign extension (a relatively

simple enhancement adding operators that allow you to extend integer values to a greater bit-

depth), was by far the most frequently used. This doesn’t represent a significant difference to

the result found in last year’s analysis244.

Notably, while web developers are faced with the choice of which HTML / JavaScript / CSS

features to use, with WebAssembly this is often a decision made by the toolchain developers.

As a result, we will likely see Post-MVP feature adoption jump when a given toolchain

determines that it is now a viable option.

Conclusions

WebAssembly is undeniably a niche technology when it comes to the web, and there is a very

good chance that it always will be. While WebAssembly has brought a wide range of languages

to the web—C++, Rust, Go, AssemblyScript, C# and more—these cannot yet be used

interchangeably with JavaScript. For the vast majority of websites, where the content is

Figure 7.6. Post-MVP extensions usage.

243. https://www.w3.org/TR/wasm-core-2/
244. https://almanac.httparchive.org/en/2021/webassembly#whats-the-usage-of-post-mvp-extensions

Part I Chapter 7 : WebAssembly

2022 Web Almanac by HTTP Archive 251

https://www.w3.org/TR/wasm-core-2/
https://almanac.httparchive.org/static/images/2022/webassembly/proposals.png
https://almanac.httparchive.org/static/images/2022/webassembly/proposals.png
https://almanac.httparchive.org/en/2021/webassembly#whats-the-usage-of-post-mvp-extensions
https://almanac.httparchive.org/en/2021/webassembly#whats-the-usage-of-post-mvp-extensions

relatively static (rendered in HTML with CSS) with a modest amount of interactivity (via

JavaScript) there simply isn’t a compelling reason to use WebAssembly at the moment.

There are some significant proposals which could change this in the future. Initially WebIDL,

which was superseded by Interface Types, which has once again been superseded by the

Component Model specification. These may result in a future where it is possible to easily

interchange JavaScript for any other programming language, but for now, this simply isn’t the

case.

Despite being a niche technology, WebAssembly is already adding value to the web. There are a

number of web applications that benefit greatly from this technology. However, web

applications are often not visible to the ’crawl’ which forms the basis of this study.

Finally, the core features of the WebAssembly runtime—multi-language, lightweight,

secure—are making it a popular choice for a wider range of non-browser applications. The State

of WebAssembly 2022 survey245 saw a significant increase in the number of people using this

technology for serverless, containerization and plug-in applications. The future of

WebAssembly could be as a niche web technology, but as an entirely mainstream runtime on a

wide range of other platforms.

Author

Colin Eberhardt

@ColinEberhardt ColinEberhardt https://blog.scottlogic.com/ceberhardt/

Colin is CTO at Scott Logic246 and is a prolific technical author, blogger and speaker

on a range of technologies. He is a board member of FINOS247, which is encouraging

open source collaboration in the financial sector. He is also very active on GitHub,

contributing to a number of different projects.

245. https://blog.scottlogic.com/2022/06/20/state-of-wasm-2022.html
246. https://www.scottlogic.com/
247. https://www.finos.org/

Part I Chapter 7 : WebAssembly

252 2022 Web Almanac by HTTP Archive

https://blog.scottlogic.com/2022/06/20/state-of-wasm-2022.html
https://blog.scottlogic.com/2022/06/20/state-of-wasm-2022.html
https://twitter.com/ColinEberhardt
https://github.com/ColinEberhardt
https://blog.scottlogic.com/ceberhardt/
https://www.scottlogic.com/
https://www.finos.org/

Part I Chapter 8

Third Parties

Written by Eugenia Zigisova
Reviewed by Barry Pollard, Kevin Farrugia, and Alex N. Jose
Analyzed by Kevin Farrugia
Edited by Shaina Hantsis

Introduction

Third parties are an integral part of most websites. This chapter shows that nearly all websites

use at least one third party, and nearly half of all requests are third-party requests.

Website owners use third parties to delegate some complex functionality such as analytics,

advertising, live chats, consent management, and others. Although website developers may not

directly control third-party code, they still can influence third parties’ impact on the websites.

Taking into account how widely third parties are used, they have a crucial impact on web

performance. It is quite common that they block page rendering, especially on mobile devices.

For instance, the average median blocking time for the top 10 most popular third parties is 1.4

seconds. Because of this, third parties can have a direct effect on Core Web Vitals248 and other

important performance metrics like First Contentful Paint249.

248. https://web.dev/vitals/
249. https://web.dev/fcp

Part I Chapter 8 : Third Parties

2022 Web Almanac by HTTP Archive 253

https://web.dev/vitals/
https://web.dev/fcp

Many recommendations can help to eliminate the negative impact. It could be simple

techniques like minifying resources or more complex ones, for example, evaluating and

choosing third-party scripts that don’t serve legacy JavaScript or loading and executing third-

party scripts using web workers.

This chapter focuses on the topic of how website owners and third-party developers can

reduce negative third-party impact and if the best practices are followed. We start with a

review of third-party prevalence and some web performance-related metrics: render-blocking

time and impact on the main thread. The second half is an analysis of the best practices

regarding minifying and compressing resources, third-party facades, async and defer script

attributes, legacy JavaScript, and other optimization opportunities.

Definitions

A third party is an entity outside the primary site-user relationship. It involves the aspects of

the site not directly within the control of the site owner but with their approval. Third-party

resources are:

• Hosted on a shared and public origin

• Widely used by a variety of sites

• Uninfluenced by an individual site owner

Some examples of third parties include Google Fonts, the jQuery library served over public

origin, and embedded YouTube videos.

To match the definition, only third parties originating from a domain whose resources can be

found on at least 50 unique pages in the HTTP Archive dataset were included.

In the case where third-party content is served from a first-party domain, it is counted as first-

party content. For example, self-hosting Google Fonts or bootstrap.css is counted as first-party

content. Similarly, first-party content served from a third-party domain is counted as third-party

content—assuming it passes the “more than 50 pages criteria”.

Third-party categories

We are relying on the third-party-web250 repository from Patrick Hulce251 to help us identify and

categorize third parties. This repository breaks down third parties by the following categories:

250. https://github.com/patrickhulce/third-party-web/#third-parties-by-category
251. https://twitter.com/patrickhulce

Part I Chapter 8 : Third Parties

254 2022 Web Almanac by HTTP Archive

https://github.com/patrickhulce/third-party-web/#third-parties-by-category
https://twitter.com/patrickhulce

• Ad - These scripts are part of advertising networks, either serving or measuring.

• Analytics - These scripts measure or track users and their actions. There’s a wide

range in impact here depending on what’s being tracked.

• CDN - These are a mixture of publicly hosted open source libraries (e.g. jQuery)

served over different public CDNs and private CDN usage.

• Content - These scripts are from content providers or publishing-specific affiliate

tracking.

• Customer Success - These scripts are from customer support/marketing providers

that offer chat and contact solutions. These scripts are generally heavier in weight.

• Hosting* - These scripts are from web hosting platforms (WordPress, Wix,

Squarespace, etc.).

• Marketing - These scripts are from marketing tools that add popups/newsletters/

etc.

• Social - These scripts enable social features.

• Tag Manager - These scripts tend to load lots of other scripts and initiate many

tasks.

• Utility - These scripts are developer utilities (API clients, site monitoring, fraud

detection, etc.).

• Video - These scripts enable video player and streaming functionality.

• Consent provider - These scripts allow sites to manage the user consent (eg. for the

General Data Protection Regulation252 compliance). They are also known as the

’Cookie Consent’ popups and are usually loaded on the critical path.

• Other - These are miscellaneous scripts delivered via a shared origin with no

precise category or attribution.

Note: The CDN category here includes providers that provide resources on public CDN

domains (e.g. bootstrapcdn.com, cdnjs.cloudflare.com, etc.) and does not include resources that

are simply served over a CDN. For example, putting Cloudflare in front of a page would not

influence its first-party designation according to our criteria.

• The same as in the previous year, the Hosting category is removed from our

252. https://en.wikipedia.org/wiki/General_Data_Protection_Regulation

Part I Chapter 8 : Third Parties

2022 Web Almanac by HTTP Archive 255

https://en.wikipedia.org/wiki/General_Data_Protection_Regulation

analysis. For example, if you happen to use WordPress.com for your blog, or Shopify

for your e-commerce platform, then we’re going to ignore other requests for those

domains by that site as not truly “third-party” as they are, in many ways, part of

hosting on those platforms.

Caveats

• All data presented here is based on a non-interactive, cold load. These values could

start to look quite different after user interaction.

• The pages are tested from servers in the U.S. with no cookies set, so third parties

requested after opt-in are not included. This will especially affect pages hosted and

predominantly served to countries in scope of the General Data Protection

Regulation253, or other similar legislation.

• Only the home pages are tested. Other pages may have different third-party

requirements.

• Some of the lesser-used third-party domains are grouped into the unknown

category.

• We are leveraging different Lighthouse audits254. Some of them have limited

coverage. Namely, it is not feasible to cover all existing facade implementations in

the third-party facades audit255.

Learn more about our Methodology.

Prevalence

The prevalence of third parties remained at the same high levels as the previous year: 94% of

websites use at least one third party.

Figure 8.1. Percent of mobile pages that use at least one third-party

94%

253. https://en.wikipedia.org/wiki/General_Data_Protection_Regulation
254. https://github.com/GoogleChrome/lighthouse/tree/master/core/audits
255. https://github.com/GoogleChrome/lighthouse/blob/master/core/audits/third-party-facades.js

Part I Chapter 8 : Third Parties

256 2022 Web Almanac by HTTP Archive

https://en.wikipedia.org/wiki/General_Data_Protection_Regulation
https://en.wikipedia.org/wiki/General_Data_Protection_Regulation
https://github.com/GoogleChrome/lighthouse/tree/master/core/audits
https://github.com/GoogleChrome/lighthouse/blob/master/core/audits/third-party-facades.js

The figure above shows the number of third-party domains for the most-used websites. For

example, on average the top 1,000 popular websites use 43 third-party domains on mobile and

53 on desktop devices. More popular websites seem to have a larger number of third-party

domains, i.e. the top 1,000 sites have twice more third parties than the median number of third

parties for all websites. This large number is explained by the fact that some third-party

providers might have content hosted on multiple domains, for example, Yahoo serves their

content from mempf.yahoo.co.jp , yjtag.yahoo.co.jp , etc. Though the exact number of

third-party providers is still a subject for further research, the current data about third-party

domains gives an overview of how much they might affect time spent on network requests. As

every request to a new domain takes time for DNS lookup and establishing an initial

connection, the more third party domains are used the more it might affect page loading speed.

Figure 8.2. Median number of third-party domains per page by rank.

Part I Chapter 8 : Third Parties

2022 Web Almanac by HTTP Archive 257

https://almanac.httparchive.org/static/images/2022/third-parties/median-number-of-third-parties-by-rank.png
https://almanac.httparchive.org/static/images/2022/third-parties/median-number-of-third-parties-by-rank.png

When looking at the distribution of third parties by category and by rank, it becomes clear that

the increase in the number of third parties on more popular websites is mostly made up of the

ad and unknown (i.e. unclassified) third-party categories. That means the third

parties—especially ads—have a crucial impact on the users because they are more used on

websites with a larger number of users.

Figure 8.3. Median number of third-party domains per page by category and rank.

Part I Chapter 8 : Third Parties

258 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/third-parties/third-party-domains-per-page-by-rank-and-category.png
https://almanac.httparchive.org/static/images/2022/third-parties/third-party-domains-per-page-by-rank-and-category.png

Google services: fonts, analytics, account management, advertising, and tag management, are

the most popular third parties across the entire web. 63% of all pages use Google Fonts which is

over 4.9 million pages out of the 7.9 million mobile pages in our dataset!

Third-party requests account for 45% of all requests made by websites, and of those third-

party requests, approximately one-third are scripts. This suggests it is worthwhile analyzing

scripts in more detail in the best practices section.

Figure 8.4. Top 10 third parties by number of pages they are used on

Figure 8.5. Percentage of scripts of all third-party requests

34%

Part I Chapter 8 : Third Parties

2022 Web Almanac by HTTP Archive 259

https://almanac.httparchive.org/static/images/2022/third-parties/top-third-parties-by-number-of-pages.png
https://almanac.httparchive.org/static/images/2022/third-parties/top-third-parties-by-number-of-pages.png

Performance impact

Some third parties might inevitably block page rendering and negatively affect the web page

loading experience. Lighthouse has a render-blocking resources audit256, that provides data

about render-blocking time.

The figure above shows the median render-blocking time for the top 10 most popular third

parties. Google maps have the most significant impact on rendering time. It accounts for more

than 2 seconds for the median website. That is a significant impact taking into account that the

recommended time for First Contentful Paint257—a page load speed metric—is 1.8 seconds.

A website can save a lot of loading time by eliminating render-blocking resources. There are

Figure 8.6. Median render-blocking time for top 10 most popular third parties.

256. https://github.com/GoogleChrome/lighthouse/blob/master/core/audits/byte-efficiency/render-blocking-resources.js
257. https://web.dev/fcp

Part I Chapter 8 : Third Parties

260 2022 Web Almanac by HTTP Archive

https://github.com/GoogleChrome/lighthouse/blob/master/core/audits/byte-efficiency/render-blocking-resources.js
https://almanac.httparchive.org/static/images/2022/third-parties/render-blocking-time-by-most-popular-third-parties.png
https://almanac.httparchive.org/static/images/2022/third-parties/render-blocking-time-by-most-popular-third-parties.png
https://web.dev/fcp

many methods to embed third parties in a non-blocking way258. For example, in the case of

Google Maps, the Maps Static API259 could be used to implement a third-party facade. Also, the

third-party iframes can be lazy-loaded.

Additionally, third-party scripts compete for the main thread resources with the website’s first-

party code. If a third-party has a long-running JavaScript task that runs on the main thread for

more than 50 ms, it is considered to be “blocking the main thread”. It can significantly influence

user experience when interacting with a page as the main thread is responsible for processing

user events, as well as rendering the page. When it is blocked, a user suffers from a non-

responsive page.

We inspected the third party summary audit260 to emulate main-thread blocking time caused by

third parties.

The figure above presents the top 10 most-used third parties and their impact on the main

thread on mobile devices. Note that for desktop devices the impact is much lower. For example,

YouTube blocks the main thread for 90% of the mobile websites while blocking only 26% of

Figure 8.7. Top 10 third parties blocking the main thread

258. https://web.dev/embed-best-practices/
259. https://developers.google.com/maps/documentation/maps-static/overview
260. https://github.com/GoogleChrome/lighthouse/blob/master/core/audits/third-party-summary.js

Part I Chapter 8 : Third Parties

2022 Web Almanac by HTTP Archive 261

https://web.dev/embed-best-practices/
https://developers.google.com/maps/documentation/maps-static/overview
https://github.com/GoogleChrome/lighthouse/blob/master/core/audits/third-party-summary.js
https://almanac.httparchive.org/static/images/2022/third-parties/third-parties-blocking-main-thread.png
https://almanac.httparchive.org/static/images/2022/third-parties/third-parties-blocking-main-thread.png

desktop websites it is embedded on. This is logical taking into account that desktop devices are

much more powerful. However, nowadays mobile user experience is very important

and—according to the Mobile Web chapter—58% of website visits are coming from mobile

devices.

To examine in more detail how the website users could be affected by the main thread blocking

third-party, we can review the median main thread blocking time.

YouTube is the most blocking third party among the top 5 most-used third parties. It blocks the

main thread for more than 1.7 seconds for the median website that loads YouTube

videos—based on the mobile device we emulate as part of our crawl. There is a notable gap

between desktop and mobile websites as the desktop websites are almost completely

unaffected.

Note that Lighthouse might mark some third parties as potentially render-blocking while their

size is so small that they don’t have any tangible effect on the render-blocking time. This is the

case for third parties like Google Fonts or Google/Doubleclick Ads whose median render-

blocking time is 0 milliseconds.

A blocked main thread has a big impact on the First Input Delay (FID)261 and Interaction to Next

Paint (INP)262 performance metrics. To provide good web page responsiveness, FID should be

Figure 8.8. Median main thread blocking time in ms for top 5 most popular third parties.

261. https://web.dev/fid/
262. https://web.dev/inp/

Part I Chapter 8 : Third Parties

262 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/third-parties/main-thread-blocking-time-by-third-party.png
https://almanac.httparchive.org/static/images/2022/third-parties/main-thread-blocking-time-by-third-party.png
https://web.dev/fid/
https://web.dev/inp/
https://web.dev/inp/

100ms or less and INP below 200ms. There is research by Annie Sullivan263 about the

correlation between Total Blocking Time and Interaction to Next Paint on mobile devices264. It

shows that the smaller the main thread blocking time, the more likely the sites meet good INP

and FID thresholds. That leads to the conclusion that it becomes harder to achieve good core

web performance metrics if third parties are blocking the main thread for such a long time, as in

the YouTube example. Moreover, other third-party and first-party assets might also contribute

to the render-blocking effect. Despite this, there are many ways to minimize the render-

blocking effect of third parties. This will be further explored in the next section.

Web performance best practices

The previous section confirmed that the third parties are potentially causing a huge

performance impact that can affect the entire website experience. However, website and third-

party developers can follow many best practices to minimize third-party performance impact

from minifying resources to using third-party facades. We looked at different third party usage

trends to understand how the best practices are followed.

Minifying resources

Minifying JavaScript and CSS files is one of the first recommendations when speaking about

web performance. To check how third-party resources are minified we are making use of the

following Lighthouse audits: Unminified JavaScript265 and Unminified CSS266.

Minifying scripts should have a large positive impact as they are the most popular third-party

content type. Moreover, compared to other content types like CSS, scripts tend to be a lot more

verbose, with comments and large variable names that affect the file size.

263. https://twitter.com/anniesullie
264. https://github.com/GoogleChromeLabs/chrome-http-archive-analysis/blob/main/notebooks/HTTP_Archive_TBT_and_INP.ipynb
265. https://web.dev/unminified-javascript/
266. https://web.dev/unminified-css/

Part I Chapter 8 : Third Parties

2022 Web Almanac by HTTP Archive 263

https://twitter.com/anniesullie
https://github.com/GoogleChromeLabs/chrome-http-archive-analysis/blob/main/notebooks/HTTP_Archive_TBT_and_INP.ipynb
https://web.dev/unminified-javascript/
https://web.dev/unminified-css/

Although some JavaScript bytes could be saved by minifying third-party resources, the first-

party scripts are still responsible for the largest amount of unminified JavaScript on the

websites, i.e. 81% of the average total potentially saved bytes. The distribution of unminified

JavaScript shows that for 75% of websites total potential savings could achieve 34.5 KB of

savings while savings from third parties are only 2.8 KB.

The next figure displays the size of potential savings by a third-party. It is important to note that

the methodology used only includes third parties that come from external domains and does

not count third-party content hosted by a first party, for example libraries imported as node

modules.

Figure 8.9. Percentage of the average potentially saved bytes of unminified JavaScript by first and
third party.

Part I Chapter 8 : Third Parties

264 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/third-parties/average-potentially-saved-bytes-of-unminified-javascript.png
https://almanac.httparchive.org/static/images/2022/third-parties/average-potentially-saved-bytes-of-unminified-javascript.png

The code.jquery.com CDN library for jQuery is the most popular JavaScript third-party

library being used on 6% of all websites on desktop (note that jQuery is used on far more

websites, but not all uses are served from this CDN). On average 43 KB of data per page that

has unminified jQuery could be saved by using the minified version of its resources, which are

available on this CDN.

17% of the websites that use jQuery hosted on a third-party domain fail the Lighthouse audit

for unminified JavaScript267. Digging deeper into how the library is imported shows that many

websites are using the unminified versions of jQuery that should only be used for development

purposes. A similar tendency can be found in the usage of some other less popular third-party

scripts.

This should serve as a reminder for web developers to check if the third-party scripts imported

on their websites are optimized for production environments.

Figure 8.10. Average potentially saved kilobytes of unminified JavaScript for top 5 third-party script
providers.

Figure 8.11. Percent of desktop pages with unminified jQuery from all pages using jQuery third-
party

17%

267. https://web.dev/unminified-javascript/

Part I Chapter 8 : Third Parties

2022 Web Almanac by HTTP Archive 265

https://almanac.httparchive.org/static/images/2022/third-parties/potential-savings-of-unminified-javascript-by-third-party.png
https://almanac.httparchive.org/static/images/2022/third-parties/potential-savings-of-unminified-javascript-by-third-party.png
https://web.dev/unminified-javascript/
https://web.dev/unminified-javascript/

The unminified CSS audit shows that third-party assets have a much smaller impact, especially

when compared with the first-party average of potentially saved bytes of CSS code, which is

89% of the total average potentially saved bytes. This data demonstrates that third-party CSS

content is well minified and has a much lower impact than first-party CSS.

Google fonts are the most-popular third party on mobile devices being used by 62.6% of all

websites. The CSS they provide is not minified. The data shows the average page which has

Google Fonts could save 13.3 KB from minifying it. This would seem like an opportunity for

improvement. However, their CSS contains a number of very similar font-face definitions

that are almost identically repeated in the case of many fonts, so HTTP-level compression will

work really well here and significantly reduce the file size, even without minification. This

makes the benefits of minifying very low, compared to the code readability for those wanting to

see the CSS to potentially replicate locally. Other third parties with more complicated and

larger CSS, may benefit from minification considerably more.

Compressing resources

Compressing files is another quick win that third-party developers can do to have a positive

impact on web performance. Most heavy content types like scripts and CSS have a good

compression coverage. Only 12% of scripts and 4.5% of CSS files of total third-party requests

are not compressed.

Figure 8.12. Percentage of average potentially saved bytes of unminified CSS by first and third party

Part I Chapter 8 : Third Parties

266 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/third-parties/average-potentially-saved-bytes-of-unminified-css.png
https://almanac.httparchive.org/static/images/2022/third-parties/average-potentially-saved-bytes-of-unminified-css.png

Website content-encoding data displayed in the above figure revealed an interesting fact about

image compression. Even though image formats like JPEG, PNG, WebP, AVIF, and others

provide compression under the hood as part of their formats, 5.2% of image content is

compressed again using Gzip or Brotli compression. Adding additional layers of compression on

top of the standard image compression formats is usually unnecessary and may lead to

increased file size and add extra load on the CPU when uncompressing the image.

Gzip is still the most popular compression type, i.e. 59% of scripts and 68% of CSS are

compressed with Gzip. However, Brotli compression is more effective. The trends among first

and third parties show that usage of Brotli compression has grown in the past 3 years, while no

compression and Gzip have fallen.

Figure 8.13. Content-encoding by third-party content type on mobile pages.

Part I Chapter 8 : Third Parties

2022 Web Almanac by HTTP Archive 267

https://almanac.httparchive.org/static/images/2022/third-parties/content-encoding-by-content-type.png
https://almanac.httparchive.org/static/images/2022/third-parties/content-encoding-by-content-type.png

The rate of first-party scripts compressed via brotli almost tripled, increasing from 15% to 40%.

However, Brotli adoption among third parties stayed more or less at the same level, changing

from 24% to 29%. Despite the slight positive tendency, there is still room for improvement of

Figure 8.14. Percentage of first-party script requests by content-encoding type and by year on
mobile websites.

Figure 8.15. Percentage of third-party script requests by content-encoding type and by year

Part I Chapter 8 : Third Parties

268 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/third-parties/first-party-content-encoding-by-year.png
https://almanac.httparchive.org/static/images/2022/third-parties/first-party-content-encoding-by-year.png
https://almanac.httparchive.org/static/images/2022/third-parties/third-party-content-encoding-by-year.png
https://almanac.httparchive.org/static/images/2022/third-parties/third-party-content-encoding-by-year.png

Brotli adoption for third parties.

Usage of third-party facades

There are multiple techniques to eliminate render-blocking resources. One of them is third-

party facades268 that are useful for visual content like YouTube videos or interactive widgets like

a live chat. They help to exclude third parties from the critical loading sequence and lazy load

them. Lighthouse has introduced an audit Lazy load third-party resources with facades269. There

are multiple third-party facade solutions, for example, lite-youtube-embed270, lite-youtube271, or

some custom approaches, and only a small number of them are in the list of third parties272

checked during the audit. This limitation makes it complicated to assess third-party facade

usage across the web at this time.

Usage of async and defer

Using async and defer is another technique that could be used by website developers to

optimize the loading of render-blocking third-party scripts.

Figure 8.16. Percentage of all third-party script requests by async and defer attributes.

268. https://web.dev/third-party-facades/
269. https://github.com/GoogleChrome/lighthouse/blob/master/core/audits/third-party-facades.js
270. https://github.com/paulirish/lite-youtube-embed
271. https://github.com/justinribeiro/lite-youtube
272. https://github.com/patrickhulce/third-party-web/blob/master/data/entities.js

Part I Chapter 8 : Third Parties

2022 Web Almanac by HTTP Archive 269

https://web.dev/third-party-facades/
https://web.dev/third-party-facades/
https://github.com/GoogleChrome/lighthouse/blob/master/core/audits/third-party-facades.js
https://github.com/paulirish/lite-youtube-embed
https://github.com/justinribeiro/lite-youtube
https://github.com/patrickhulce/third-party-web/blob/master/data/entities.js
https://almanac.httparchive.org/static/images/2022/third-parties/async-and-defer-for-third-party-scripts.png
https://almanac.httparchive.org/static/images/2022/third-parties/async-and-defer-for-third-party-scripts.png

The async attribute is considerably more popular than defer . It is used for 62% of total

third-party scripts on mobile devices. Usage of the async attribute can still result in a render-

blocking script as its execution can start during HTML parsing. The async attribute is useful

for critical resources that are important during the page loading and can interrupt rendering.

The fact that async is more used demonstrates that third-party scripts are mostly treated as

critical resources. Although this is true for some scripts, many third parties, for example, a video

player is less critical. Deferred scripts potentially have a better impact on page rendering time

which is reflected in core web performance metrics like Largest Contentful Paint273. Website

developers should consider using defer for third-party assets that are not important for the

critical rendering path.

Which resources are critical and which could be deferred might be a tricky question to

consider, especially when considering Consent Management third parties that enable other third

parties to be used. For example, analytics scripts are usually considered important for site

owners but can’t be used without the user’s consent in countries with GDPR274 or similar

legislation, making user consent third-party critical. Loading consent third-party resources in a

critical path may result in a bad user experience causing Cumulative Layout Shifts and First

Input Delay. Therefore, developers should strive for a balance between the way third parties

are loaded and a good user experience.

Legacy JavaScript

Despite JavaScript’s rapid involvement, the prevalence of legacy code is still significant. We are

using one of the Lighthouse audits to check how many third parties are serving legacy

JavaScript to modern browsers275.

In general, third parties account for 59% of Lighthouse legacy JavaScript audit failures. A closer

look into the audit results highlights the top 5 third-party script providers that include legacy

JavaScript.

Figure 8.17. Percent of legacy JavaScript Lighthouse audit failure caused by third-party

59%

273. https://web.dev/lcp/
274. https://en.wikipedia.org/wiki/General_Data_Protection_Regulation
275. https://github.com/GoogleChrome/lighthouse/blob/master/core/audits/byte-efficiency/legacy-javascript.js

Part I Chapter 8 : Third Parties

270 2022 Web Almanac by HTTP Archive

https://web.dev/lcp/
https://en.wikipedia.org/wiki/General_Data_Protection_Regulation
https://github.com/GoogleChrome/lighthouse/blob/master/core/audits/byte-efficiency/legacy-javascript.js
https://github.com/GoogleChrome/lighthouse/blob/master/core/audits/byte-efficiency/legacy-javascript.js

Facebook is a third-party with legacy JavaScript that affects the most pages. It introduces

legacy code to around 20% of the total number of web pages on mobile and desktop devices

correspondingly when looking at both facebook.net and fbcdn.net from the above

graph. Nowadays, when old browsers like Internet Explorer may no longer need to be

supported, the necessity to keep legacy JavaScript becomes lower. Despite this fact, the trends

of using Facebook resources that have legacy JavaScript in the past 3 years reveal that the

numbers actually increased—from around 14% in 2020 to 18% in 2022 for facebook.net
alone. This is due to the increasing number of websites that embed this third party.

Serving legacy JavaScript to modern browsers results in a larger amount of redundant and

slower code. We can look into this more by analyzing the size of unused JavaScript.

Figure 8.18. Percentage of websites using third parties that have legacy JavaScript

Part I Chapter 8 : Third Parties

2022 Web Almanac by HTTP Archive 271

https://almanac.httparchive.org/static/images/2022/third-parties/pages-with-third-parties-that-use-legacy-javascript.png
https://almanac.httparchive.org/static/images/2022/third-parties/pages-with-third-parties-that-use-legacy-javascript.png

The median amount of unused third-party JavaScript is approximately 120 KB. For 25% of

websites that use third-party scripts, it is more than 261 KB.

Unfortunately, website owners do not always have the possibility to change the way third-party

JavaScript is bundled. However, if the third-party dependencies are self-hosted they can be

optimized during development by adopting modern script bundling approaches276 that could

help to reduce the amount of unused code.

Other optimization technologies

One of the third-party resource management problems is that sometimes it can skip the

development team and be added using tag management tools without proper web performance

evaluation. As a result, third-party scripts can uncontrollably affect the page loading and

responsiveness experience.

Some modern third-party loading and execution solutions have appeared in recent years. For

example, Partytown277 is a library that relocates third-party scripts into the web worker to free

up the main thread for first-party code. Currently, the library is in the early adoption stage and

its usage is very low. Only 70 websites from the whole dataset are using it in 2022. However,

the Next.js framework has started to introduce this solution278 that could increase Partytown’s

Figure 8.19. Size of unused third-party JavaScript.

276. https://web.dev/publish-modern-javascript
277. https://partytown.builder.io/
278. https://nextjs.org/docs/basic-features/script#off-loading-scripts-to-a-web-worker-experimental

Part I Chapter 8 : Third Parties

272 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/third-parties/size-of-unused-javascript.png
https://almanac.httparchive.org/static/images/2022/third-parties/size-of-unused-javascript.png
https://web.dev/publish-modern-javascript
https://partytown.builder.io/
https://nextjs.org/docs/basic-features/script#off-loading-scripts-to-a-web-worker-experimental

popularity.

The previous sections showed that the responsibility for third-party negative impact is split

between first and third-party developers. However, browsers are also showing interest in

optimizing the loading of third-party resources279. The proposals include better real user

monitoring and developer tooling providing more data about the impact of third parties on

their websites.

That might be challenging to achieve given only 25% of total third-party requests provide the

Timing-Allow-Origin (TAO) header280 that is important for third-party web performance data

transparency.

Taking into account that the TAO header prevalence has not improved in comparison to the

previous years281, we would encourage third-party providers to use it more actively, to allow first

parties to get more accurate insights into the performance of these resources.

Conclusion

Third parties are often associated with a negative impact on website performance. Indeed some

account for notable rendering and main thread blocking time, especially on mobile devices,

which are increasingly the more popularly used devices. However, the main goal of this chapter

is to show that the responsibility for third-party impact on web performance is shared between

third-party providers and website owners. There are lots of opportunities for website

developers to lower the third-party impact on their websites. In the future, browsers also might

look to automatically apply third-party resource optimizations.

We have analyzed data related to different web performance recommendations, including

compressed and minified resources, legacy APIs, unused JavaScript, etc. Based on the findings,

we have conducted the following action points that could be helpful for website and third-party

developers to improve the user experience:

• Load third-party resources suitable for production environments where the assets

Figure 8.20. Percent of third-party requests with Timing-Allow-Origin header header

25%

279. https://developer.chrome.com/blog/third-party-scripts/#proposed-approach
280. https://developer.mozilla.org/docs/Web/HTTP/Headers/Timing-Allow-Origin
281. https://almanac.httparchive.org/en/2021/third-parties#timing-allow-origin-header-prevalence

Part I Chapter 8 : Third Parties

2022 Web Almanac by HTTP Archive 273

https://developer.chrome.com/blog/third-party-scripts/#proposed-approach
https://developer.chrome.com/blog/third-party-scripts/#proposed-approach
https://developer.mozilla.org/docs/Web/HTTP/Headers/Timing-Allow-Origin
https://almanac.httparchive.org/en/2021/third-parties#timing-allow-origin-header-prevalence
https://almanac.httparchive.org/en/2021/third-parties#timing-allow-origin-header-prevalence

are minified and compressed.

• Leverage different third-party facade techniques, especially for “heavy” content like

videos, maps, and live chats, that can block render and have a crucial impact on First

Contentful Paint.

• While evaluating third-party candidates, ensure that they are not serving legacy

APIs except where necessary.

• Consider how critical third-party content is for the page and load the non-critical

resources using the defer attribute when it is not render-blocking.

• Explore modern third-party load and execution strategies.

• Choose Brotli compression over gzip.

There are many more optimization opportunities out there! We encourage web developers to

take them so that functionality provided by third parties would serve websites without harming

the user experience.

Author

Eugenia Zigisova

@jevgeniazi imeugenia https://github.com/imeugenia/speaking/blob/main/README.md

Eugenia is a frontend engineer and tech event speaker who is passionate about

web performance and state machines. She has experience working in fast-growing

Berlin-based startups like N26 and Gorillas, and now she has joined RapidAPI282.

She ran a Google Developer Group in Latvia for several years.

282. https://rapidapi.com/

Part I Chapter 8 : Third Parties

274 2022 Web Almanac by HTTP Archive

https://twitter.com/jevgeniazi
https://github.com/imeugenia
https://github.com/imeugenia/speaking/blob/main/README.md
https://rapidapi.com/

Part I Chapter 9

Interoperability

Written by Brian Kardell
Reviewed by Eric A. Meyer and Philip Jägenstedt
Analyzed by Rick Viscomi and Kevin Farrugia
Edited by Barry Pollard

Introduction

In 2019, the Mozilla Developer Network’s (MDN) Product Advisory Board put together a

significant survey of over 28,000 developers and designers from 173 countries. Findings from

this were published as the first Web Developer Needs Assessment283 (Web DNA). This study

identified—among other things—that some of the key frustrations and pain points most often

involved differences between browsers. In 2020 this led to a followup known as the MDN

Browser Compatibility Report284.

Historically, implementer priorities and focus are independently managed. However, given this

new data, browser manufactures came together for another first-of-its-kind effort called

Compat 2021, which identified 5 specific areas of joint focus toward alignment across

thousands of Web Platform Tests. At the beginning of Compat 2021, all engines scored only

65-70% compatibility in the five areas in stable, shipping browsers. Today, all of them are over

283. https://insights.developer.mozilla.org/reports/pdf/MDN-Web-DNA-Report-2019.pdf
284. https://insights.developer.mozilla.org/reports/mdn-browser-compatibility-report-2020.html

Part I Chapter 9 : Interoperability

2022 Web Almanac by HTTP Archive 275

https://insights.developer.mozilla.org/reports/pdf/MDN-Web-DNA-Report-2019.pdf
https://insights.developer.mozilla.org/reports/mdn-browser-compatibility-report-2020.html
https://insights.developer.mozilla.org/reports/mdn-browser-compatibility-report-2020.html
https://web.dev/compat2021/

90%. In 2022, this effort was expanded—and renamed—to Interop 2022.

Both of these efforts offer some different things for this chapter to look at. It’s been nearly a

year since most improvements from Compat 2021 shipped, and while many things in Interop

2022 are already deployed in shipping browsers, there is more to come before the end of the

year.

An interesting question in these efforts is “how do we know that we did well (or didn’t)?” Seeing

significant score improvements is useful, but insufficient without developer adoption. So, this

year for the first time, the Web Almanac will also include a new Interoperability chapter to

begin wrestling with these questions and provide some central information to developers about

what’s changed, and what’s worth another look.

This chapter will summarize the work done in Compat 2021 and measure what we can, as well

as look into what’s happening in Interop 2022 and consider whether there are also potentially

valuable metrics we can track over time. Both of these efforts contain a wide mix of cases from

stable, already useful features with varying degrees of incompatibility or frustration to brand

new things we tried to set off right from the start.

Compat 2021

Compat 2021 had 5 major focus areas

• Grid

• Flexbox

• Sticky Position

• Transforms

• Aspect Ratio

In January 2021, all stable/shipping browsers scored 65-70% compatibility in these areas, and

it wasn’t necessarily the same 30-35% of tests that were failing in each browser.

Part I Chapter 9 : Interoperability

276 2022 Web Almanac by HTTP Archive

https://hacks.mozilla.org/2022/03/interop-2022/

Today, you can see that significant levels of improvement have been made. Chrome and Edge

are at 96%, Firefox at 91%, and Safari at 94%.

Grid

CSS Grid is one of the most popular features in many years. The HTTP Archive data shows year

over year doubling of adoption since its arrival, with a slight slowdown this year—only

increasing half-again instead of doubling. Grid already had quite a high degree of

interoperability, but there were still a number of minor differences in support. Work was done

Figure 9.1. Compat 2021 dashboard.
(Source: Web Platform Tests285)

285. https://wpt.fyi/compat2021

Part I Chapter 9 : Interoperability

2022 Web Almanac by HTTP Archive 277

https://almanac.httparchive.org/static/images/2022/interoperability/compat-2021-dashboard.png
https://almanac.httparchive.org/static/images/2022/interoperability/compat-2021-dashboard.png
https://wpt.fyi/compat2021

throughout 2021 and 2022 to improve alignment of the over 900 tests in Web Platform Tests

that test features of Grid. If you’ve had past headaches trying to do something in Grid, give it

another try—the situation may have changed for the better.

A good example of this is the ability to animate grid tracks—grid rows and columns—which as of

mid-2022 was only supported by Firefox. However, as this chapter was being written, grid-

track animation was added to both WebKit286 and Chromium287, meaning all three major engines

should be animating grid tracks by the time you read this.

Flexbox

Flexbox is even older and more widely used. This year its use has grown again, now appearing

on 75% of mobile pages and 76% of desktop pages. It has a similar number of tests to Grid and

despite very wide adoption started in much worse shape. Entering 2021, we had a combination

of ragged bugs and sub-features that remained under-implemented. For example, positional-

alignment keyword values288 (which can be applied to justify-content and align-content and also

to justify-self and align-self) had ragged support and several interoperability issues. For

absolute positioned flex items this was even worse. These issues have been resolved.

Another bit of focus was toward flex-basis: content , which is used to automatically size

based on the flex item’s content. This was initially implemented in Firefox, but implementations

in WebKit and Chromium were underway in 2021. Today these tests pass uniformly in all

browsers and flex-basis: content appears on 112,323 pages on desktop and 75,565

mobile, roughly 1% of pages. That’s not a bad start for a feature in its first year of universal

support and about double what it was last year. We’ll keep an eye on this metric in the future.

Figure 9.2. Desktop pages using flex-basis: content in their stylesheets.

112,323

286. https://webkit.org/blog/13152/webkit-features-in-safari-16-0/
287. https://groups.google.com/a/chromium.org/g/blink-dev/c/Ll7br0giMk8/m/l4WNHdatBQAJ
288. https://developer.mozilla.org/docs/Web/CSS/CSS_Box_Alignment#positional_alignment_keyword_values

Part I Chapter 9 : Interoperability

278 2022 Web Almanac by HTTP Archive

https://webkit.org/blog/13152/webkit-features-in-safari-16-0/
https://groups.google.com/a/chromium.org/g/blink-dev/c/Ll7br0giMk8/m/l4WNHdatBQAJ
https://developer.mozilla.org/docs/Web/CSS/CSS_Box_Alignment#positional_alignment_keyword_values
https://developer.mozilla.org/docs/Web/CSS/CSS_Box_Alignment#positional_alignment_keyword_values

Sticky positioning

Sticky positioning has been around for a while. In fact, it’s worth noting that it is the most

popular feature query in used by a large margin289, accounting for over 50% of feature queries. It

had several interoperability issues; for example, the inability to stick headers in tables in

Chrome. position: sticky is actively used in around 5% of desktop pages and 4% of

mobile pages in 2022. We’ll keep an eye on this metric for some time to come to see how

addressing those interoperability issues affects adoption over time.

CSS transforms

CSS Transforms are popular and have been around for a long time. However, there were many

Figure 9.3. Desktop pages using position: sticky in their stylesheets.

5.5%

Figure 9.4. CSS Transforms Web Page Tests dashboard (stable).
(Source: Web Platform Tests290)

289. https://almanac.httparchive.org/en/2022/css#feature-queries
290. https://wpt.fyi/compat2021?feature=css-transforms&stable

Part I Chapter 9 : Interoperability

2022 Web Almanac by HTTP Archive 279

https://almanac.httparchive.org/en/2022/css#feature-queries
https://almanac.httparchive.org/en/2022/css#feature-queries
https://almanac.httparchive.org/static/images/2022/interoperability/css-transforms-wpt-dashboard-stable.png
https://almanac.httparchive.org/static/images/2022/interoperability/css-transforms-wpt-dashboard-stable.png
https://wpt.fyi/compat2021?feature=css-transforms&stable

interoperability issues at the start, particularly around perspective:none and transform-
style: preserve-3d . This meant that many animations were annoyingly inconsistent291.

A recent compat 2021 graph showing the same CSS transforms in experimental browsers as

above shows all browsers are scoring 90% or better in their experimental versions, which show

future versions of the browsers. This was one of the areas with big, visible improvements in

stable browsers, which continue to improve, as part of Interop 2022 involves continuing

Compat 2021 work.

aspect-ratio

aspect-ratio was a new feature developed in 2021. Given its potential widespread

usefulness, we chose to aim for high interoperability from the start.

Figure 9.5. CSS Transforms Web Page Tests dashboard (experimental).
(Source: Web Platform Tests292)

291. https://web.dev/compat2021/#css-transforms
292. https://wpt.fyi/compat2021?feature=css-transforms

Part I Chapter 9 : Interoperability

280 2022 Web Almanac by HTTP Archive

https://web.dev/compat2021/#css-transforms
https://almanac.httparchive.org/static/images/2022/interoperability/css-transforms-wpt-dashboard-experimental.png
https://almanac.httparchive.org/static/images/2022/interoperability/css-transforms-wpt-dashboard-experimental.png
https://wpt.fyi/compat2021?feature=css-transforms

In 2022, aspect-ratio is already appearing in the CSS of 2% of URLs in the archive crawl.

Note that doesn’t mean that 2% of these pages are using aspect-ratio themselves: rules

may be loaded for use in other pages on the site. Which rules are applied in those pages is a

different question, and it shows a more modest 1.55% of page views on desktop and 1.44% on

mobile. Still, the growth chart shows steady and increasing adoption. This will be an interesting

metric to track as we move forward.

Interop 2022

Like the Compat effort before it, the renamed Interop effort focuses on a mix of things from

collections of bugs to landing good, final implementations to relatively new but quickly shipping

features we’d like to set off in good standing. Let’s start with the bugs…

Bugs

In many cases, we have otherwise mature features with ragged bugs reported in different

browsers. Ragged bugs mean that the authoring experience is potentially a lot worse than

individual pass rates might imply. For example, if all browsers report a pass rate on a series of

Figure 9.6. Aspect-ratio usage over time.
(Source: Chrome Status293)

293. https://chromestatus.com/metrics/css/timeline/popularity/657

Part I Chapter 9 : Interoperability

2022 Web Almanac by HTTP Archive 281

https://almanac.httparchive.org/static/images/2022/interoperability/aspect-ratio-usage.png
https://almanac.httparchive.org/static/images/2022/interoperability/aspect-ratio-usage.png
https://chromestatus.com/metrics/css/timeline/popularity/657

tests of 70%, but all browsers fail on a different 30%, interoperability in practice would be quite

low. A significant portion of our focus in Interop 2022 is around aligning implementations and

closing bugs on features like these.

Forms

For most of the web’s history, forms have played a pretty important role. In 2022, over 69% of

desktop pages include a <form> element. They’ve had a lot of investment, but despite that,

they’re still the source of a lot of browser bugs as developers find cases where things differ

from the specs, or differ from other implementations in sometimes subtle ways. We identified a

set of 200 tests294 in which the pass rate was very ragged. Individual scores ranged from ~62%

(Safari) to ~91% (Chrome), but again, each browser had different gaps in support.

We have made some pretty radical progress toward closing these gaps in experimental

releases, and we hope that as we close out the year these will land in stable browsers. There is

probably little that can be tracked here using the HTTP Archive data in terms of use, or

adoption, but hopefully developers experience less pain and frustration and require fewer

workarounds for individual browsers.

294. https://wpt.fyi/
results/?label=master&label=experimental&product=chrome&product=firefox&product=safari&aligned&view=interop&q=label%3Ainterop-2022-forms

Part I Chapter 9 : Interoperability

282 2022 Web Almanac by HTTP Archive

https://docs.google.com/spreadsheets/d/1grkd2_1xSV3jvNK6ucRQ0OL1HmGTsScHuwA8GZuRLHU/edit#gid=2057119066
https://docs.google.com/spreadsheets/d/1grkd2_1xSV3jvNK6ucRQ0OL1HmGTsScHuwA8GZuRLHU/edit#gid=2057119066
https://docs.google.com/spreadsheets/d/1grkd2_1xSV3jvNK6ucRQ0OL1HmGTsScHuwA8GZuRLHU/edit#gid=2057119066
https://wpt.fyi/results/?label=master&label=experimental&product=chrome&product=firefox&product=safari&aligned&view=interop&q=label%3Ainterop-2022-forms
https://wpt.fyi/results/?label=master&label=experimental&product=chrome&product=firefox&product=safari&aligned&view=interop&q=label%3Ainterop-2022-forms

Scrolling

Over the years we’ve added new patterns and developed new abilities around scroll

experiences like scroll-snap , scroll-behavior , and overscroll-behavior . The

desire for these sorts of powers are clear—in 2022, the number of CSS stylesheets including

some of these key properties looked like this:

Figure 9.7. Forms WPT dashboard (experimental).
(Source: Web Platform Tests295)

295. https://wpt.fyi/interop-2022?feature=interop-2022-forms&stable

Part I Chapter 9 : Interoperability

2022 Web Almanac by HTTP Archive 283

https://almanac.httparchive.org/static/images/2022/interoperability/forms-wpt-dashboard.png
https://almanac.httparchive.org/static/images/2022/interoperability/forms-wpt-dashboard.png
https://wpt.fyi/interop-2022?feature=interop-2022-forms&stable

Unfortunately, this is an area where a number of incompatibilities remain, and dealing with

incompatibilities in scrolling causes developers a lot of pain. We identified 106 Web Platform

Tests296 around scrolling. At the beginning of the process, stable-release scores ranged from

~70% (Firefox and Safari) to about 88% (Chrome). Again, keep in mind that these are overall

scores—because the gaps differed, the real “interoperability” intersection was lower than any

of these.

Figure 9.8. Scroll property adoption.

296. https://wpt.fyi/results/
css?label=master&label=experimental&product=chrome&product=firefox&product=safari&aligned&view=interop&q=label%3Ainterop-2022-scrolling

Part I Chapter 9 : Interoperability

284 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/interoperability/scroll-property-adoption.png
https://almanac.httparchive.org/static/images/2022/interoperability/scroll-property-adoption.png
https://wpt.fyi/results/css?label=master&label=experimental&product=chrome&product=firefox&product=safari&aligned&view=interop&q=label%3Ainterop-2022-scrolling
https://wpt.fyi/results/css?label=master&label=experimental&product=chrome&product=firefox&product=safari&aligned&view=interop&q=label%3Ainterop-2022-scrolling

It is very difficult to estimate what effect these improvements will have on adoption over time,

but we’ll keep an eye on these metrics. In the meantime, if you’ve experienced some

interoperability pains with scrolling features, you might give them another look. We hope that

as these improvements continue and reach stable browser releases, the experience will get a

lot better.

Typography and Encodings

Rendering of text is sort of the web’s forte. Like forms, many basic ideas have been around

forever, but there remain a number of gaps and inconsistencies around support for typography

and encodings.

Figure 9.9. Scolling WPT dashboard.
(Source: Web Platform Tests297)

297. https://wpt.fyi/interop-2022?feature=interop-2022-scrolling&stable

Part I Chapter 9 : Interoperability

2022 Web Almanac by HTTP Archive 285

https://almanac.httparchive.org/static/images/2022/interoperability/scrolling-wpt-dashboard.png
https://almanac.httparchive.org/static/images/2022/interoperability/scrolling-wpt-dashboard.png
https://wpt.fyi/interop-2022?feature=interop-2022-scrolling&stable

Interop 2022 took up a general bag of issues around font-variant-alternates , font-
variant-position , the ic unit, and CJK text encodings. We identified 114 tests in Web

Platform Tests298 representing different sorts of gaps.

Chrome has recently begun to close gaps with Safari, but both Safari and WebKit still require

some attention to catch up to the completeness of Firefox in this area.

Completing Implementations

Aligning implementations is particularly difficult. There is a delicate balance between the need

for experimentation and initial implementation experience and having enough agreement to

Figure 9.10. Typography and encodings WPT dashboard.
(Source: Web Platform Tests299)

298. https://wpt.fyi/results/?label=master&label=experimental&product=chrome&product=firefox&product=safari&aligned&view=interop&q=label%3Ainterop-2022-text
299. https://wpt.fyi/interop-2022?feature=interop-2022-text&stable

Part I Chapter 9 : Interoperability

286 2022 Web Almanac by HTTP Archive

https://wpt.fyi/results/?label=master&label=experimental&product=chrome&product=firefox&product=safari&aligned&view=interop&q=label%3Ainterop-2022-text
https://wpt.fyi/results/?label=master&label=experimental&product=chrome&product=firefox&product=safari&aligned&view=interop&q=label%3Ainterop-2022-text
https://almanac.httparchive.org/static/images/2022/interoperability/typography-and-encodings-wpt-dashboard.png
https://almanac.httparchive.org/static/images/2022/interoperability/typography-and-encodings-wpt-dashboard.png
https://wpt.fyi/interop-2022?feature=interop-2022-text&stable

ensure that the work is well understood and very likely to reach the status of shipping

implementation in all browsers. Sometimes this alignment can take years. This year we’ve

focused on three items which had an implementation and at least some agreement that it’s

ready: The <dialog> element, CSS Containment, and Subgrid. Let’s look at each.

<dialog>

A dialog element was first shipped in Chrome 37 in August 2014. Introducing a dialog requires

introducing and defining a number of supporting concepts like “top-layer” and “inertness.” It

also requires answering many new accessibility and UX questions.

A number of things caused work on dialogs to stall for a long time, but over the years it’s picked

back up. It landed in Firefox Nightly 53 behind a flag in April 2017. Since then, a lot of work has

gone into answering all of those questions. Final details were sorted out and work was

prioritized as part of Interop 2022 to ensure good interoperability to start with. We identified

88 Tests. It was shipped by default in stable browsers in both Firefox 98300 and Safari 15.4301 in

March 2022, with all browsers scoring ~93% or better.

300. https://developer.mozilla.org/docs/Mozilla/Firefox/Releases/98
301. https://developer.apple.com/documentation/safari-release-notes/safari-15_4-release-notes

Part I Chapter 9 : Interoperability

2022 Web Almanac by HTTP Archive 287

https://developer.mozilla.org/docs/Mozilla/Firefox/Releases/98
https://developer.apple.com/documentation/safari-release-notes/safari-15_4-release-notes

It’s hard to predict how many of the pages the archive crawls will require a <dialog> , but

tracking its growth will be informative and interesting. Last year, only one shipping browser

supported <dialog> , and it appeared on ~0.101% of pages in the mobile data set. At the time

of the crawl we used for this chapter, it had been shipping universally for about 5 months and

we found it appearing in ~0.148%303. Still small numbers, but that’s ~146% of what it was this

time last year. We will continue to track this metric next year. In the meantime, if you have a

need for a <dialog> there’s good news: It’s now universally available for use!

CSS containment

CSS containment introduces a concept for isolating a subtree of the page from the rest of the

Figure 9.11. Dialog element WPT dashboard.
(Source: Web Platform Tests302)

302. https://wpt.fyi/interop-2022?feature=interop-2022-dialog&stable
303. https://docs.google.com/spreadsheets/d/1grkd2_1xSV3jvNK6ucRQ0OL1HmGTsScHuwA8GZuRLHU/edit#gid=2057119066

Part I Chapter 9 : Interoperability

288 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/interoperability/dialog-element-wpt-dashboard.png
https://almanac.httparchive.org/static/images/2022/interoperability/dialog-element-wpt-dashboard.png
https://wpt.fyi/interop-2022?feature=interop-2022-dialog&stable
https://docs.google.com/spreadsheets/d/1grkd2_1xSV3jvNK6ucRQ0OL1HmGTsScHuwA8GZuRLHU/edit#gid=2057119066

page in terms of how CSS should process and render it. It was introduced as a primitive which

could be used to improve performance, and to open the door for figuring out Container

Queries304.

It first shipped in Chrome stable in July 2016. Firefox shipped the second implementation in

September 2019. This year it was taken up by Interop 2022 to align and ensure that as it

becomes universally available, we start out in good shape. We identified 235 tests306. Safari

shipped containment support in stable release 15.4307 in March 2022. Throughout the year, each

browser improved support, and it is now universally available.

Figure 9.12. Containment WPT dashboard.
(Source: Web Platform Tests305)

304. https://developer.mozilla.org/docs/Web/CSS/CSS_Container_Queries
305. https://wpt.fyi/interop-2022?feature=interop-2022-contain&stable
306. https://wpt.fyi/results/css/css-

contain?label=master&label=experimental&product=chrome&product=firefox&product=safari&aligned&view=interop&q=label%3Ainterop-2022-contain
307. https://developer.apple.com/documentation/safari-release-notes/safari-15_4-release-notes

Part I Chapter 9 : Interoperability

2022 Web Almanac by HTTP Archive 289

https://developer.mozilla.org/docs/Web/CSS/CSS_Container_Queries
https://developer.mozilla.org/docs/Web/CSS/CSS_Container_Queries
https://almanac.httparchive.org/static/images/2022/interoperability/containment-wpt-dashboard.png
https://almanac.httparchive.org/static/images/2022/interoperability/containment-wpt-dashboard.png
https://wpt.fyi/interop-2022?feature=interop-2022-contain&stable
https://wpt.fyi/results/css/css-contain?label=master&label=experimental&product=chrome&product=firefox&product=safari&aligned&view=interop&q=label%3Ainterop-2022-contain
https://developer.apple.com/documentation/safari-release-notes/safari-15_4-release-notes
https://developer.apple.com/documentation/safari-release-notes/safari-15_4-release-notes

In the 2022 data, containment appears in stylesheets on 3.7% of pages on mobile and 3.1% of

pages on desktop.

The figure above shows the relative appearance of values in those pages— layout
containment being far and away the most popular usage, accounting for 34% of contain
values.

While it is useful on its own, additional levels of containment support are a prerequisite to

supporting container queries, so this will be an interesting metric to continue to track over time

as container queries is the #1 most requested CSS feature308 for many years. Now that

Figure 9.13. Number of mobile pages using containment in their stylesheets.

3.7%

Figure 9.14. contain property usage.

308. https://2021.stateofcss.com/en-US/opinions/#currently_missing_from_css_wins

Part I Chapter 9 : Interoperability

290 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/interoperability/contain-property-usage.png
https://almanac.httparchive.org/static/images/2022/interoperability/contain-property-usage.png
https://2021.stateofcss.com/en-US/opinions/#currently_missing_from_css_wins

containment is universally available, it’s a great time for you to have a look and familiarize

yourself with the basic concepts.

Note that some degree of container queries support is already available in Chrome and Safari

and polyfills are available, so we also decided to look at how many stylesheets already contain a

@container ruleset, wondering how much this would account for the use we saw above.

Not much, yet it would seem! A mere 238 pages, out of the nearly 8 million pages we crawled in

our mobile data set use container queries. Given that it is brand new and not yet completely

shipping, this isn’t surprising. It does give us a nice baseline to start tracking adoption from in

the future though.

Subgrid

While CSS grid layout has allowed a container to express layout of its children in terms of rows,

columns and tracks—there has always been something of a limit here. There is frequently a

need for descendants that are not children to participate in the same grid layout. Subgrid309 is

the solution for problems like this. It was first supported in a stable release in Firefox in

December 2019, but other implementations didn’t immediately follow.

Coordinating work on this long awaited feature and ensuring good interoperability was another

goal in Interop 2022. We marked 51 Tests in Web Platform Tests310.

Figure 9.15. Percentage of mobile pages containing a @container ruleset.

0.002%

309. https://developer.mozilla.org/docs/Web/CSS/CSS_Grid_Layout/Subgrid
310. https://wpt.fyi/results/css/css-grid/

subgrid?label=master&label=experimental&product=chrome&product=firefox&product=safari&aligned&view=interop&q=label%3Ainterop-2022-subgrid

Part I Chapter 9 : Interoperability

2022 Web Almanac by HTTP Archive 291

https://developer.mozilla.org/docs/Web/CSS/CSS_Grid_Layout/Subgrid
https://wpt.fyi/results/css/css-grid/subgrid?label=master&label=experimental&product=chrome&product=firefox&product=safari&aligned&view=interop&q=label%3Ainterop-2022-subgrid

As of the time of this writing, there has been very good progress (Safari is now the most

complete), and there are at least 2 implementations (Safari and Firefox) in stable shipping

browsers. We hope to see rapid improvement in Chrome before the end of the year.

While this isn’t fully available in all stable browsers yet the dataset did include some small

amount of use already.

Figure 9.16. Subgrid WPT dashboard.
(Source: Web Platform Tests311)

Figure 9.17. Percentage of mobile pages containing a use of subgrid in their stylesheet.

0.002%

311. https://wpt.fyi/interop-2022?feature=interop-2022-subgrid&stable

Part I Chapter 9 : Interoperability

292 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/interoperability/subgrid-wpt-dashboard.png
https://almanac.httparchive.org/static/images/2022/interoperability/subgrid-wpt-dashboard.png
https://wpt.fyi/interop-2022?feature=interop-2022-subgrid&stable

New Features

This year, all of the new features that fall under the category of CSS, and most of the data about

them, will be covered in the CSS chapter. Here, we’ll mainly focus on some highlights.

Color Spaces and Functions

Color on the web has always been full of fascinating challenges. Over the years, we’ve given

authors many ways to express what are—in the end—the same sRGB312 colors. That is, one can

write as a color name (red). Simple enough.

However, we could also use its hex equivalent (#FF0000) . Humans don’t generally think in

hexadecimal, so we added the rgb() color function (rgb(255,0,0)). Note that both of

those are just using two different, but equivalent, numbering systems. They are also about

expressing things in terms of mixing the intensity of individual lights that were common in

cathode ray tube displays.

The RGB method of constructing colors can be very hard for humans to visualize, so we

developed other coordinate systems for expressing sRGB colors in a (perhaps?) easier to

understand, like hsl(0, 100%, 50%) or hwb(0, 0%, 0%) . However, again, these are sRGB

coordinate systems.

So, what happens when our display abilities exceed their limits? This is, in fact, the case today, as

can be seen with wide gamut displays.

In Safari 10, released in 2017, Apple added support for P3 color images. The new lab() and

lch() coordinate systems were added to CSS in order to support the full available gamut

Figure 9.18. p3 color space compared to sRGB.

312. https://en.wikipedia.org/wiki/SRGB

Part I Chapter 9 : Interoperability

2022 Web Almanac by HTTP Archive 293

https://en.wikipedia.org/wiki/SRGB
https://en.wikipedia.org/wiki/HSL_and_HSV
https://en.wikipedia.org/wiki/HSL_and_HSV
https://en.wikipedia.org/wiki/HWB_color_model
https://en.wikipedia.org/wiki/HWB_color_model
https://almanac.httparchive.org/static/images/2022/interoperability/p3-color-space.jpg
https://almanac.httparchive.org/static/images/2022/interoperability/p3-color-space.jpg

space, based on the CIELAB model313. They are perceptually uniform, allowing us to express

colors we could not previously (and defining what to do if support is lacking). Support for these

first shipped in Safari 15 in September 2021.

The fuller gamut space and better perceptual uniformity of lab() and lch() also allow us to

more easily focus on new color functions like color-mix() , which takes two colors and

returns the result of mixing them in a specified color space by a specified amount.

Interop 2022 took up 189 tests314 around these items with a goal of prioritizing good

interoperability. Safari began pretty well out ahead and has only improved—both Firefox and

Chrome have made steady improvements, but they’re still quite a bit behind in this area. One

challenge, inevitably, is that much lower-level support—throughout the underlying graphics

library, rendering pipeline, etc.315—is also built to deal in sRGB, so adding support is not easy.

313. https://en.wikipedia.org/wiki/CIELAB_color_space#Cylindrical_model
314. https://wpt.fyi/results/css/css-

color?label=master&label=experimental&product=chrome&product=firefox&product=safari&aligned&view=interop&q=label%3Ainterop-2022-color
315. https://youtu.be/eHZVuHKWdd8?t=906

Part I Chapter 9 : Interoperability

294 2022 Web Almanac by HTTP Archive

https://en.wikipedia.org/wiki/CIELAB_color_space#Cylindrical_model
https://wpt.fyi/results/css/css-color?label=master&label=experimental&product=chrome&product=firefox&product=safari&aligned&view=interop&q=label%3Ainterop-2022-color
https://youtu.be/eHZVuHKWdd8?t=906
https://youtu.be/eHZVuHKWdd8?t=906

Viewport Units

In the 2020 MDN Browser Compatibility Report, the ability to work with the reported size of

the viewport with existing vh/vw units was a common theme317. As browsers experiment with

different interface choices and websites have different design needs, the CSS Working Group

defined several new classes of viewport units318 for measuring the largest (lv* units), smallest

(sv* units) and dynamic (dv* units) viewport measures. All viewport related measures

includes similar units:

• 1% of the width (vw , lvw , svw , dvw)

Figure 9.19. Color spaces and functions WPT dashboard.
(Source: Web Platform Tests316)

316. https://wpt.fyi/interop-2022?feature=interop-2022-color&stable
317. https://insights.developer.mozilla.org/reports/mdn-browser-compatibility-report-2020.html#findings-viewport
318. https://drafts.csswg.org/css-values-4/#viewport-variants

Part I Chapter 9 : Interoperability

2022 Web Almanac by HTTP Archive 295

https://almanac.httparchive.org/static/images/2022/interoperability/color-spaces-and-functions-wpt-dashboard.png
https://almanac.httparchive.org/static/images/2022/interoperability/color-spaces-and-functions-wpt-dashboard.png
https://wpt.fyi/interop-2022?feature=interop-2022-color&stable
https://insights.developer.mozilla.org/reports/mdn-browser-compatibility-report-2020.html#findings-viewport
https://insights.developer.mozilla.org/reports/mdn-browser-compatibility-report-2020.html#findings-viewport
https://drafts.csswg.org/css-values-4/#viewport-variants
https://drafts.csswg.org/css-values-4/#viewport-variants

• 1% of the height (vh , lvh , svh , dvh)

• 1% of the size in the inline axis (vi , lvi , svi , dvi)

• 1% of the size of the initial containing block (vb , lvb , svb , dvb)

• The smaller of two dimensions (vmin , lvmin , svmin , dvmin)

• The larger of two dimensions (vmax , lvmax , svmax , dvmax)

Interop 2022 identified 7 tests to verify various aspects of those units. Safari shipped the first

support for these units in March 2022, followed by Firefox at the end of May. As of the time of

this writing it is supported in experimental builds of Chromium.

Figure 9.20. Viewport units WPT dashboard (experimental).
(Source: Web Platform Tests319)

319. https://wpt.fyi/interop-2022?feature=interop-2022-viewport

Part I Chapter 9 : Interoperability

296 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/interoperability/viewport-units-wpt-dashboard.png
https://almanac.httparchive.org/static/images/2022/interoperability/viewport-units-wpt-dashboard.png
https://wpt.fyi/interop-2022?feature=interop-2022-viewport

As of the time of this writing, the HTTP Archive hasn’t turned up any use of these units in the

wild yet, but it’s very new. We’ll continue to track adoption on this going forward.

Cascade Layers

Cascade Layers are an interesting new feature of CSS, built on a fundamental idea that has

existed in CSS all along. As authors, our primary means of expressing the importance of rules

has been specificity. This works well for a lot of things but it can quickly get unwieldy as we try

to incorporate ideas for design systems or components. Browsers also use CSS internally in

what is called the UA stylesheet. However, you might note that you don’t typically have

specificity related battles with the UA stylesheet. That’s because there are “layers” of rules built

right into how CSS works. Cascade Layers provides a way for authors to plug into that same

mechanism and manage their CSS and specificity challenges more effectively. Miriam Suzanne320

wrote a fuller explanation and guide321.

320. https://twitter.com/TerribleMia
321. https://css-tricks.com/css-cascade-layers/

Part I Chapter 9 : Interoperability

2022 Web Almanac by HTTP Archive 297

https://twitter.com/TerribleMia
https://css-tricks.com/css-cascade-layers/

To set this off well, Interop 2022 defined 31 tests in Web Platform Tests323. Support in stable

browsers at the beginning of the year was non-existent, but since April it is now universally

implemented among stable releases in the 3 engines. Here’s what development looked like.

As of the time of the dataset for this year, layers occurred on a very small number of sites in the

Figure 9.21. Cascade layers WPT dashboard (experimental)..
(Source: Web Platform Tests322)

Figure 9.22. Percentage of mobile pages containing a @layer ruleset.

0.003%

322. https://wpt.fyi/interop-2022?feature=interop-2022-cascade
323. https://wpt.fyi/results/css/css-

cascade?label=experimental&label=master&product=chrome&product=firefox&product=safari&aligned&view=interop&q=label%3Ainterop-2022-cascade

Part I Chapter 9 : Interoperability

298 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/interoperability/cascade-layers-wpt-dashboard.png
https://almanac.httparchive.org/static/images/2022/interoperability/cascade-layers-wpt-dashboard.png
https://wpt.fyi/interop-2022?feature=interop-2022-cascade
https://wpt.fyi/results/css/css-cascade?label=experimental&label=master&product=chrome&product=firefox&product=safari&aligned&view=interop&q=label%3Ainterop-2022-cascade

wild.

The largest number of layers defined was 6. Future editions of the Web Almanac will continue

to track adoption and trends on Cascade Layers. Hopefully aligned work, close releases and

early focus on good interoperability help it reach its potential and reduce any frustrations.

Given that it’s shipping everywhere, now would be a great time to learn more about how

Cascade Layers can help you wrangle control of your CSS.

Conclusion

Interoperability is the goal of standards, and ultimately key to large scale adoption. However, in

practice, reaching interoperability is the culmination of complex independent work, focus,

budgeting and priorities. Historically this has occasionally been challenging with gaps of

sometimes many years between implementations landing and then various incompatibilities.

Browser vendors have heard this feedback and begun to put efforts toward increased focus on

coordinated efforts to close existing gaps and to tighten the timeframe that it takes for new

implementations to arrive with a very high degree of interoperability.

We hope that this review of the work that has been done this year serves to inform developers

and prompt adoption of and attention to these features. We will continue to track those

metrics that we can and look toward how we can use data to inform our sense of how we’re

doing and influence where and how we’re focusing.

Author

Brian Kardell

@briankardell bkardell https://bkardell.com

Brian Kardell is a developer advocate and W3C Advisory Committee

Representative at Igalia324, a standards contributor, blogger325. He was a founder of

the Extensible Web Community Group and co-author of The Extensible Web

Manifesto326.

324. https://igalia.com
325. https://bkardell.com
326. https://extensiblewebmanifesto.org

Part I Chapter 9 : Interoperability

2022 Web Almanac by HTTP Archive 299

https://twitter.com/briankardell
https://github.com/bkardell
https://bkardell.com/
https://igalia.com/
https://bkardell.com/
https://extensiblewebmanifesto.org/
https://extensiblewebmanifesto.org/

300 2022 Web Almanac by HTTP Archive

Part II Chapter 10

SEO

Written by Sophie Brannon, Itamar Blauer, and Mordy Oberstein
Reviewed by Patrick Stox, Tushar Pol, Mobeen Ali, Dave Smart, and John Murch
Analyzed by Colt Sliva, JR Oakes, and Derek Perkins
Edited by Michael Lewittes

Introduction

Search engine optimization (SEO) is a digital technique used to improve a website or page’s

visibility so that it organically ranks higher in search engine results. It often combines technical

configuration, content creation, and link acquisition, with the goal of improving relevance for a

searcher’s query and intent. SEO has continued to grow in popularity and become one of the

most popular digital marketing channels.

Part II Chapter 10 : SEO

2022 Web Almanac by HTTP Archive 301

With custom metrics that expose some new, never-before-seen insights, we have analyzed

more than eight million homepages across the web, comparing our findings to those from

2021327 and, in some instances, from 2020328. Note: Our data, particularly from Lighthouse and

the HTTP Archive, is limited to just websites’ homepages, not site wide crawls. Learn more

about these limitations in our Methodology.

Read on for more about how search engine-friendly the web is.

Crawlability and indexability

Crawling and Indexing are the backbone of what Google and other search engines ultimately

display on their search results pages. Without them, ranking simply cannot happen.

The first step in the process is discovering web pages via crawling. While numerous pages are

crawled, fewer of them are actually indexed, which is essentially stored and categorized in a

search engine’s database. Based on a searcher’s query, matching indexed pages are then served.

This section deals with the state of the web, as it pertains to bots crawling and indexing

Figure 10.1. Google Trends comparing directional search popularity of topics of SEO versus pay-per-
click, social media marketing, and email marketing.

327. https://almanac.httparchive.org/en/2021/seo
328. https://almanac.httparchive.org/en/2020/seo

Part II Chapter 10 : SEO

302 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/seo/seo-term-trends.png
https://almanac.httparchive.org/static/images/2022/seo/seo-term-trends.png
https://almanac.httparchive.org/en/2021/seo
https://almanac.httparchive.org/en/2020/seo

websites. What directives are sites giving search engines bots? What are sites doing to ensure

Google serves the right page and not a near duplicate in search results?

Let’s explore the web and some of its facets that impact crawlability and indexability.

Robots.txt

The robots.txt file instructs bots, including search engine crawlers, as to where they can and

cannot go, meaning what they can or cannot crawl.

Robots.txt status codes

There has been a nominal increase in the percentage of sites whose robots.txt files return a 200

status code in 2022 compared to 2021. In 2022, 81.5% of robots.txt files for desktop sites

returned a 200 status code while 82.4% of mobile sites returned the same. This stands in

comparison to 81% and 81.9% of robots.txt files on desktop and mobile sites, respectively,

returning a 200 status code in 2021.

Concurrently, there was just a small reduction in the percentage of robots.txt files returning a

404 status code in 2022 compared to 2021. Last year, 17.3% of robots.txt files for desktop sites

returned a 404 while 16.5% of mobile sites’ robots.txt files returned that status code. In 2022,

it’s just 16.5% for desktop and 15.8% for mobile sites’ robots.txt files that are returning a 404

Figure 10.2. Robots.txt status codes.

Part II Chapter 10 : SEO

2022 Web Almanac by HTTP Archive 303

https://almanac.httparchive.org/static/images/2022/seo/robots-txt-status-codes.png
https://almanac.httparchive.org/static/images/2022/seo/robots-txt-status-codes.png

status code.

Like in 2021, the remaining status codes are associated with a minimal number of robots.txt

files.

Note: The above data does not indicate how well optimized a robots.txt file is. Even a file

returning a 200 status code can contain directives that are perhaps not in the best interest of a

site’s overall health.

Robots.txt size

As expected, the overwhelming majority of robots.txt files were quite small, weighing between

0-100 KB.

Google’s max limit for a robots.txt file is 500 KiB. Any directives found after the file reaches

that limit are ignored by the search engine. A very small number of robots.txt files fall into that

category. Specifically, just .005% of both desktop and mobile sites contain a robots.txt file that

is above Google’s max limit (which is consistent with 2021’s data). In cases where the file size

exceeds limits, Google recommends329 consolidating directives.

Figure 10.3. Robots.txt size codes.

329. https://developers.google.com/search/docs/advanced/robots/robots_txt

Part II Chapter 10 : SEO

304 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/seo/robots-size.png
https://almanac.httparchive.org/static/images/2022/seo/robots-size.png
https://developers.google.com/search/docs/advanced/robots/robots_txt

Robots.txt user-agent usage

Most websites today (74.9% desktop and 76.1% mobile) do not indicate a specific user-agent

within the robots.txt file, meaning the directives in the file apply to all user-agents. This is

consistent with the data from 2020 when 74% of desktop robots.txt files and 75.2% of mobile

robots.txt files did not specify a particular user-agent.

Interestingly, Bingbot did not fall into the top 10 most specified user-agents. As for SEO tools,

much like in 2021, both Majestic’s and Ahrefs’ bots were in the top 5 most specified user-

agents, while Semrush’s bot rounded out the top 15 most specific user-agents.

In terms of search engines, Googlebot leads the pack with 3.3% of robots.txt files specifying the

user-agent while Bingbot comes in at 2.5%. Interestingly, there was nearly a full percentage

point difference in 2021 between mobile site robots.txt files and desktop files specifying

Bingbot. Such is not the case in 2022 where the data is essentially uniform.

Of note, Yandexbot was specified in just 0.5% of robots.txt files in 2021. By 2022 , there was a

six-fold increase, with 3% of files specifying Yandexbot.

Figure 10.4. Robots.txt user-agent usage.

Part II Chapter 10 : SEO

2022 Web Almanac by HTTP Archive 305

https://almanac.httparchive.org/static/images/2022/seo/robots-useragents.png
https://almanac.httparchive.org/static/images/2022/seo/robots-useragents.png

IndexIfEmbedded tag

In January 2022, Google introduced a new robots tag called indexifembedded. The tag offers

control over indexation when content is embedded in an iframe on a page, even when a noindex

tag has been applied.

Let’s start by determining the percentage of pages for which the new tag is possibly applicable.

A little more than 4% of pages contain an <iframe> element. Of the 4.1% of pages containing

that element, 76% of them had the iframe noindexed, making them a potential use case for the

new indexifembedded tag.

However, a minuscule percentage of sites have adopted the indexifembedded robots tag.

The tag can be found on just 0.015% of pages surveyed.

Of the pages that have adopted the indexifembedded tag, 98.3% of them implemented it in

the header while 66.3% are using the HTML.

Figure 10.5. Pages with <iframe> .

Part II Chapter 10 : SEO

306 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/seo/pages-with-iframe.png
https://almanac.httparchive.org/static/images/2022/seo/pages-with-iframe.png

Invalid head elements

The <head> element serves as the container for a page’s metadata. From an SEO point of

view, a page’s title tag and meta description reside within the <head> element, as do robots

meta tags.

Not all elements, however, belong in the <head> . Should Google come across an invalid

element in the page’s <head> , it assumes that it has reached the end of the <head> and will

not discover the rest of its contents330.

Our data from 2022 shows 12.7% of desktop pages and 12.6% of mobile pages contain an

invalid element in the <head> .

Figure 10.6. Indexifembedded user agents.

330. https://developers.google.com/search/docs/advanced/guidelines/valid-html

Part II Chapter 10 : SEO

2022 Web Almanac by HTTP Archive 307

https://almanac.httparchive.org/static/images/2022/seo/indexifembedded-useragents.png
https://almanac.httparchive.org/static/images/2022/seo/indexifembedded-useragents.png
https://developers.google.com/search/docs/advanced/guidelines/valid-html
https://developers.google.com/search/docs/advanced/guidelines/valid-html

The most misapplied element to the <head> by far is the element. It is incorrectly

placed within the <head> on 9.7% of mobile pages and 9.9% of desktop pages.

The <div> element is the only other misapplied element to appear within the <head> on

more than 3% of the pages within the 2022 dataset. It is incorrectly applied to the <head> on

3.5% of desktop pages and 3.9% of mobile pages.

Canonical tags

Canonical tags are traditionally used when defining duplicate content pages and to help search

engines prioritize. They are a snippet of HTML code (rel="canonical") that allows

webmasters to define to the search engine which page is the “preferred” version. They are not

directives, and instead act as a “hint.” Therefore, search engines such as Google determine their

own canonical version of the page, based on how useful they believe the page is for the user.

Canonical tags can also be used to consolidate other signals such as links, as well as to simplify

tracking metrics and better manage syndicated content.

Figure 10.7. Invalid <head> elements.

Part II Chapter 10 : SEO

308 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/seo/invalid-head-elements.png
https://almanac.httparchive.org/static/images/2022/seo/invalid-head-elements.png

We see from the data that canonical tags usage has increased over the years. In 2019, 48.3% of

mobile pages used canonicals. In 2020, this grew to 53.6%. In 2021, this grew even further to

58.5%. And in 2022, it’s increased to 60.6%.

Mobile has a higher percentage of canonical attribution than desktop (60.6% vs. 58.7%), which

is likely a direct result of single use URLs on mobile. Since the data set in this chapter is limited

to home pages, it’s fair to assume that this is the reason for the higher canonical attribution on

mobile. According to Google’s guidelines331, having a separate mobile site is not recommended.

HTML vs. HTTP canonical usage

There are two ways of implementing canonical tags:

1. Within the HTML <head>
2. Within the HTTP headers (Link HTTP header)

Figure 10.8. Canonical usage.

331. https://developers.google.com/search/mobile-sites/mobile-seo/separate-urls

Part II Chapter 10 : SEO

2022 Web Almanac by HTTP Archive 309

https://almanac.httparchive.org/static/images/2022/seo/canonical-usage.png
https://almanac.httparchive.org/static/images/2022/seo/canonical-usage.png
https://developers.google.com/search/mobile-sites/mobile-seo/separate-urls

The most common usage across both desktop and mobile is through HTML at 58.6% and 60.4%,

respectively. This is likely due to the ease of implementation. While one requires basic HTML

knowledge, the other method (through HTTP headers) requires a more technical skillset.

Figure 10.9. HTML versus HTTP Canonical usage.

Part II Chapter 10 : SEO

310 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/seo/html-versus-http-canonical.png
https://almanac.httparchive.org/static/images/2022/seo/html-versus-http-canonical.png

Raw vs. rendered usage

Compared to 2021, where raw canonical usage was 57.7% and rendered canonical usage was

58.4%, in 2022 there was some growth, with raw canonical usage reaching 59.4% and rendered

canonical usage rising to 60.4%. This correlates with the growth in overall canonical use.

Page experience

In this section of the chapter, we’re looking at different elements of page experience and how

this has evolved since the 2021 Web Almanac.

HTTPS

In 2021, there was an increased focus on site speed and page experience following Google’s

introduction of the Core Web Vitals update, which had been publicized and pushed throughout

2020. While evidence of HTTPS being a ranking factor dates back to 2014332, the overall focus

on page experience since the Core Web Vitals announcement likely had an impact on the

adoption of HTTPS across the web.

Figure 10.10. Raw vs rendered canonical.

332. https://developers.google.com/search/blog/2014/08/https-as-ranking-signal

Part II Chapter 10 : SEO

2022 Web Almanac by HTTP Archive 311

https://almanac.httparchive.org/static/images/2022/seo/raw-vs-rendered-canonical.png
https://almanac.httparchive.org/static/images/2022/seo/raw-vs-rendered-canonical.png
https://developers.google.com/search/blog/2014/08/https-as-ranking-signal

We see from the data how more sites are using a secure certificate (HTTPS) at the time of the

crawl (taking into account expirations of these certificates). In 2021, 84.3% of desktop pages

used HTTPs, and it went up to 87.71% in 2022. On mobile, this increased from 81.2% in 2021 to

84.75% in 2022. Since the announcement of the Core Web Vitals update in 2020 to the present

there’s been an increase of nearly 11% on mobile and 10% on desktop.

Mobile friendliness

Mobile-friendliness can be determined by looking at responsive design implementation vs.

dynamic serving. To identify this, we looked at the use of the viewport meta tag which is

commonly used in responsive design vs. the vary: User-Agent header to determine if a website

is using dynamic serving.

Viewport meta tag

We have seen the use of the viewport meta tag grow from 91.1% of mobile pages using

Figure 10.11. Percentage of websites supporting HTTPS.

Figure 10.12. Sites supporting a viewport meta tag.

92%

Part II Chapter 10 : SEO

312 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/seo/https-usage.png
https://almanac.httparchive.org/static/images/2022/seo/https-usage.png

viewport meta tag in 2021 to now 92%. In 2020, it was at 89.2%.

Vary header usage

The vary header is a HTTP header that enables different content to be served to different users

on different devices. This is known as dynamic serving, and is the opposite to responsive design,

which serves the exact same content, but to different devices.

Vary header usage has remained relatively unchanged for the past few years. In 2021, 12.6% of

desktop and 13.4% of mobile pages used this footprint. In 2022, the data is nearly identical,

with 12% for desktop and 13% for mobile.

Legible font sizes

In 2021, 13.5% of mobile pages were not using a legible font size. Thanks to Google’s focus on

user experience across all devices, more pages than ever now use a legible font size. Only 11%

of mobile pages are still not using a legible font size.

Figure 10.13. Vary header used.

Part II Chapter 10 : SEO

2022 Web Almanac by HTTP Archive 313

https://almanac.httparchive.org/static/images/2022/seo/vary-header.png
https://almanac.httparchive.org/static/images/2022/seo/vary-header.png

Core Web Vitals (CWV)

Core Web Vitals was a hot topic in SEO throughout 2021 following Google announcing the roll

out of its Page Experience update that June. We have seen a continued interest this year, with

more sites paying attention to their CWV performance.

Core Web Vitals are a series of standardized metrics that can help developers and SEOs to

better understand how a user is experiencing a page. The main metrics are:

• Largest Contentful Paint (LCP) measures how quickly a web page’s main content

loads

• First Input Delay (FID) measures how long it takes from when a user interacts with a

web page (i.e. clicks a button) to when the browser is able to respond

• Cumulative Layout Shift (CLS) measures the visual stability and whether a page

shifts within the viewport

All three of these metrics are critical to user experience and the stability of a web page.

The data for Core Web Vitals is sourced from the Chrome User Experience Report (CrUX). The

report comes from a public dataset of real (opted-in) users, and is sourced from millions of

websites (as opposed to lab data, which is simulated).

Figure 10.14. Sites not using a legible font size.

11%
Part II Chapter 10 : SEO

314 2022 Web Almanac by HTTP Archive

On mobile, 39% of sites now pass CWV, which is up from 29% in 2021 and just 20% in 2020.

And while 92% of sites currently pass FID, most site owners are struggling with LCP, which has

a pass rate of 51%.

Figure 10.15. Percent of good CWV experiences on mobile.

Figure 10.16. Percent of good CWV experiences on desktop.

Part II Chapter 10 : SEO

2022 Web Almanac by HTTP Archive 315

https://almanac.httparchive.org/static/images/2022/seo/good-cwv-mobile.png
https://almanac.httparchive.org/static/images/2022/seo/good-cwv-mobile.png
https://almanac.httparchive.org/static/images/2022/seo/good-cwv-desktop.png
https://almanac.httparchive.org/static/images/2022/seo/good-cwv-desktop.png

On desktop, we see an astounding 100% of sites passing FID, though similarly struggling to pass

LCP and CLS. Noteworthy, more sites are passing CWV on desktop (43%) than on mobile (39%).

lazy loading vs. eager loading iframes

Lazy loading is a technique that defers the loading of non-critical elements on a web page until

the point in which they are needed. This can help with the reduction of page weight, as well as

conserve bandwidth and system resources. Eager loading is when related entities are

simultaneously loaded and fetched all at once.

When looking solely at iframes, we see lazy loading is preferred far more to eager loading, with

4.08% of iframes being lazy loaded versus 0.37% of iframes being eager loaded.

This is particularly interesting since browser-level lazy loading for iframes has become

standardized in Chrome333. The standardization of the loading attribute, without specifying

lazy or eager, is likely why data shows 94.4% of attributes do not contain lazy or eager.

Figure 10.17. iframe loading property usage.

333. https://web.dev/iframe-lazy-loading/

Part II Chapter 10 : SEO

316 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/seo/iframe-loading.png
https://almanac.httparchive.org/static/images/2022/seo/iframe-loading.png
https://web.dev/iframe-lazy-loading/
https://web.dev/iframe-lazy-loading/

On page

When looking for relevancy signals, search engines look at the content on a web page. There

are various on-page SEO elements that can affect rankings and/or appearance on the SERPs

(Search Engine Results Pages).

Meta data

For the second year in a row, 98.8% of desktop and mobile pages had <title> elements. Also

in 2022, 71% of desktop and mobile homepages had <meta name="description"> tags, a

0.1% decrease from last year.

<title> element

The <title> element is an on-page ranking factor that provides a strong hint regarding page

relevance and may appear on the SERP. In August 2021, Google started rewriting more

websites’ titles in their search results334.

Figure 10.18. Title tag and Meta descriptions.

334. https://developers.google.com/search/blog/2021/08/update-to-generating-page-titles

Part II Chapter 10 : SEO

2022 Web Almanac by HTTP Archive 317

https://almanac.httparchive.org/static/images/2022/seo/has-title-meta.png
https://almanac.httparchive.org/static/images/2022/seo/has-title-meta.png
https://developers.google.com/search/blog/2021/08/update-to-generating-page-titles
https://developers.google.com/search/blog/2021/08/update-to-generating-page-titles

In 2022:

• The median page <title> contained 6 words.

• The median page <title> contained 39 and 40 characters on desktop and mobile,

Figure 10.19. Title words by percentile.

Figure 10.20. Title characters by percentile.

Part II Chapter 10 : SEO

318 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/seo/title-words-percentile.png
https://almanac.httparchive.org/static/images/2022/seo/title-words-percentile.png
https://almanac.httparchive.org/static/images/2022/seo/title-characters-percentile.png
https://almanac.httparchive.org/static/images/2022/seo/title-characters-percentile.png

respectively.

• 10% of pages had <title> elements containing 12 words.

• 10% of desktop and mobile pages had <title> elements containing 74 and 75

characters, respectively.

These stats remain unchanged from last year. Note: These titles on homepages tend to be

shorter than those used on deeper pages.

Meta description tag

The <meta name="description> tag does not directly impact rankings. However, it may

appear as the page description on the SERP, and it can influence click-through rate.

Figure 10.21. Meta description words by percentile.

Part II Chapter 10 : SEO

2022 Web Almanac by HTTP Archive 319

https://almanac.httparchive.org/static/images/2022/seo/meta-description-words-percentile.png
https://almanac.httparchive.org/static/images/2022/seo/meta-description-words-percentile.png

In 2022:

• The median desktop and mobile page <meta name="description> tag

contained 19 words.

• The median desktop and mobile page <meta name="description> tag

contained 137 and 136 characters, respectively.

• 10% of desktop and mobile pages had <meta name="description> tags

containing 35 words.

• 10% of desktop and mobile pages had <meta name="description> tags

containing 232 characters.

For the most part, these stats are relatively unchanged from last year.

Header tags

Heading elements (<h1> , <h2> …) are important parts of a page’s structure since they help

organize the content on the page. Heading elements are not a direct ranking factor, but they

can help Google better understand the content found on the page.

Figure 10.22. Meta description characters by percentile.

Part II Chapter 10 : SEO

320 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/seo/meta-description-characters-percentile.png
https://almanac.httparchive.org/static/images/2022/seo/meta-description-characters-percentile.png

The trends around implementation of headings by type in 2022 closely match those from 2021,

with just a few small differences. For example, 71.9% of mobile pages utilized an h2 in 2021

while 73.02% did in 2022.

Another trend that has carried over is the discrepancy in usage between the h1 and h2. While

72.7% of desktop pages implement an h2, only 65.8% use an h1 (with similar numbers reflected

on mobile).

Although there is no definitive explanation for this, one possible reason is that the h1 is often

placed above any content. It’s not essential for the natural flow of the content. However,

without the h2, there could be a long flow of unstructured content.

Figure 10.23. Presence of H elements.

Part II Chapter 10 : SEO

2022 Web Almanac by HTTP Archive 321

https://almanac.httparchive.org/static/images/2022/seo/has-h-elements.png
https://almanac.httparchive.org/static/images/2022/seo/has-h-elements.png

Overall, much like 2021’s stats, there are relatively few empty H elements found on pages.

Additionally, there is little discrepancy between the desktop and mobile data.

There is divergence, however, with the h1. While 65.8% of pages contained an h1 element,

58.5% contained a non-empty h1 element. That’s a 7.3 percentage point difference. Contrast

that with the h2, which has just a 1.5 percentage point difference. As noted in the 2021 Web

Almanac, this may be a result of the many websites that wrap logo-images in the h1 element on

homepages.

Image attributes

The primary purpose of the alt attribute on the element is accessibility. Alt attributes

also assist search engines rank specific assets in image search.

Figure 10.24. Presence of non-empty H elements.

Part II Chapter 10 : SEO

322 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/seo/nonempty-h-elements.png
https://almanac.httparchive.org/static/images/2022/seo/nonempty-h-elements.png

Figure 10.25. Percentage of img alt attributes present.

Figure 10.26. Percentage of img with blank alt .

Part II Chapter 10 : SEO

2022 Web Almanac by HTTP Archive 323

https://almanac.httparchive.org/static/images/2022/seo/image-alt-present.png
https://almanac.httparchive.org/static/images/2022/seo/image-alt-present.png
https://almanac.httparchive.org/static/images/2022/seo/image-alt-empty.png
https://almanac.httparchive.org/static/images/2022/seo/image-alt-empty.png

What we found:

• On the median desktop page, 56.25% of tags have the alt attribute. This is a

negligible decrease of just a quarter of a percentage point from 2021’s 56.5%.

• On the median mobile page, 54.9% of tags have the alt attribute. This is a

marginal increase from the 54.6% of tags with the alt attribute in 2021.

• There is a noticeable change in the median desktop and mobile pages containing

 tags that have blank alt attributes compared to 2021. Last year, the median

desktop and mobile pages, respectively had 10.5% and 11.8% tags with

blank alt attributes. In 2022, this figure rose to 12.1% and 12.5% on desktop and

mobile, respectively.

• The trend towards 0% of median desktop and mobile pages containing tags

missing the alt attribute continues. On the median desktop page in 2021, 1.4% of

the tags had blank attributes. It fell to 0% in 2022.

Image loading property usage

How user agents prioritize the rendering and displaying of images is affected by the loading

attribute applied to elements. This implementation can impact user experience and

Figure 10.27. Percentage of img missing alt .

Part II Chapter 10 : SEO

324 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/seo/image-alt-missing.png
https://almanac.httparchive.org/static/images/2022/seo/image-alt-missing.png

performance time, with possible effects on both SEO success and conversions.

What we found:

• There has been a significant reduction in the number of pages that do not use any

image loading property. In 2021, 83.3% of desktop pages and 83.5% of mobile pages

didn’t utilize any image loading property at all. It’s now 78.3% of desktop pages and

77.9% of mobile pages in 2022.

• Conversely, the implementation of loading=”lazy” has increased. In 2021, both

15.6% of desktop and mobile pages implemented loading=”lazy”. This has increased

to 19.8% (desktop) and 20.3% (mobile) in 2022.

• The number of pages defaulting to the brower’s loading method has fallen in 2022.

On desktop, .07% of pages use loading=”auto” and .08% on mobile. In 2021, .01% of

pages utilized loading=”auto”.

Word count

While content length is not a ranking factor, it is still valuable to assess how many words a page

contains on average.

Figure 10.28. Image loading property usage.

Part II Chapter 10 : SEO

2022 Web Almanac by HTTP Archive 325

https://almanac.httparchive.org/static/images/2022/seo/image-loading-property.png
https://almanac.httparchive.org/static/images/2022/seo/image-loading-property.png

Rendered word count

Let’s begin with the number of words found on the page once it has been rendered.

The median desktop page in 2022 contains 421 words. This is quite close to the 425 words

found in 2021. However, this is still a big leap percentage-wise from what we found back in

2020 when 402 words were found on the median desktop page. Whatever the cause was in

2021 for the uptick in rendered word count, it appears to have remained through 2022.

Similarly, the median number of rendered words on mobile in 2022 contains 366 words, which

is also similar percentage-wise to the data in 2021. For context, desktop pages contain more

words than mobile pages. The median desktop page contains 15% more words than mobile

pages within the 50th percentile. This is significant since Google some years ago adopted a

mobile-first index, and content not found on the mobile version of a page runs the risk of not

being indexed by the search engine.

Raw word count

Let’s now examine the number of words contained in a page’s source code prior to the browser

executing any JavaScript code or other modifications in the DOM or CSSOM.

Figure 10.29. Visible words rendered by percentile.

Part II Chapter 10 : SEO

326 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/seo/visible-words-rendered.png
https://almanac.httparchive.org/static/images/2022/seo/visible-words-rendered.png

Much like the rendered word count, there is a minimal difference between the data in 2022

versus what was found in 2021. For example, the median desktop page’s raw word count was

369 in 2021 compared to 363 in 2022 and median mobile page’s raw word count was 318

which is slightly less than 2021 which saw 321 words as the median.

Here, too, mobile pages contain fewer words than desktop pages across the board. The median

mobile page contains a raw word count that is 12.39% less than desktop. As noted above, this is

significant because of Google’s mobile-first indexing.

Structured Data

Implementing Structured Data has come into increased focus as rich results on the Google

SERP have become more prominent.

Figure 10.30. Visible words raw by percentile.

Part II Chapter 10 : SEO

2022 Web Almanac by HTTP Archive 327

https://almanac.httparchive.org/static/images/2022/seo/visible-words-raw.png
https://almanac.httparchive.org/static/images/2022/seo/visible-words-raw.png

The implementation of structured data in the HTML of a page has continually increased. In

2021, 42% of desktop pages and 43% of mobile pages used structured data. In 2022, it’s risen

to 44% of desktop pages and 45% of mobile pages that have structured data within their HTML.

This reflects 2 percentage point increases on both desktop and mobile pages. Two possible

explanations for greater adoption could be that a number of Content Management Systems

have added automatic structured data markup to their pages, as well as the aforementioned

prominence that structured data has played in Google SERPs.

There has also been a great reduction in both mobile and desktop pages that have structured

data added via JavaScript where it was not contained within the initial HTML response. In

2021, 1.7% of mobile pages and 1.4% of desktop pages had structured data added via

JavaScript where it was not contained within the initial HTML response. It’s now just .15% on

desktop and .13% on mobile.

Figure 10.31. Raw versus rendered structured data.

Part II Chapter 10 : SEO

328 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/seo/raw-vs-rendered-structured-data.png
https://almanac.httparchive.org/static/images/2022/seo/raw-vs-rendered-structured-data.png

Most popular Structured Data formats

Structured data can be implemented through various ways on a given page. However, JSON-LD,

which aligns with Google’s own recommendation for implementation, is by far the most popular

format.

Compared to 2021’s figures, 2022’s data shows a nominal increase in implementation via

JSON-LD and a slight decrease when implementing structured data with microdata. These

numbers bear out in particular on mobile. In 2021, 60.5% of mobile pages used JSON-LD to

implement structured data. The number of mobile pages in 2022 using JSON-LD for adding

structured data is up 2.3% to 61.9%. Conversely, 36.9% of mobile pages in 2021 utilized

structured data with microdata. That number fell 4.3% in 2022 to 35.3%.

Figure 10.32. Structured Data formats.

Part II Chapter 10 : SEO

2022 Web Almanac by HTTP Archive 329

https://almanac.httparchive.org/static/images/2022/seo/structured-data-formats.png
https://almanac.httparchive.org/static/images/2022/seo/structured-data-formats.png

Most popular schema types

There is strong correlation between the most popular types of schema found on homepages in

2021 and 2022.

As noted in previous editions of the Web Almanac, WebSite , SearchAction , WebPage ,

SearchAction is what powers the Sitelinks Search Box335 [see chart above].

When comparing 2021 to 2022, there has been a significant increase in the adoption of the

most popular schemas across the board. In fact, every noted schema type has experienced an

increase in adoption in 2022. Among the most notable are the schema for BreadcrumbsList,

which has risen 22.8% since 2021 and ImageObject, which is up 12.3%.

In terms of implementing the most popular schemas, there are relatively tiny differences

between the percentages of mobile versus desktop pages.

Figure 10.33. Most popular schema types.

335. https://developers.google.com/search/docs/advanced/structured-data/sitelinks-searchbox

Part II Chapter 10 : SEO

330 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/seo/popular-schemas.png
https://almanac.httparchive.org/static/images/2022/seo/popular-schemas.png
https://developers.google.com/search/docs/advanced/structured-data/sitelinks-searchbox

You can read more about structured data in our dedicated chapter.

Links

Search engines utilize links to discover new pages and to pass PageRank, which helps determine

the importance of pages. Links also act as a reference from one page to another (presumably

relevant) page.

Non-descriptive link text

Anchor text, which is the clickable text used in a link, helps search engines to understand the

content of the linked page. Lighthouse has a test to check if the anchor text used is useful and/

or contextual, or if it’s generic and/or non-descriptive such as “learn more” or “click here.” In

2022, 15% and 17% of the tested links on mobile and desktop, respectively, did not have

descriptive anchor text, a missed opportunity from an SEO perspective and bad for

accessibility.

Outgoing links

Internal links are links to other pages on the same website. Much like last year, 2022’s figures

Figure 10.34. Median links to same site.

Part II Chapter 10 : SEO

2022 Web Almanac by HTTP Archive 331

https://almanac.httparchive.org/static/images/2022/seo/median-internal-links.png
https://almanac.httparchive.org/static/images/2022/seo/median-internal-links.png

suggest pages had fewer links on their mobile versions compared to their desktop

counterparts.

The median number of internal links is now 16% higher on desktop than mobile at 56% and

48%, respectively. It’s likely a result of developers minimizing the navigation menus and footers

on mobile for ease of use on smaller screens.

According to CrUX data, the 1,000 most popular websites have more outgoing internal links

than less popular sites, a total of 137 links on desktop versus 106 on mobile. That’s more than

two times higher than the median. This may be attributed to the use of mega-menus on larger

sites that generally have more pages.

External links are links to other pages on a different website. The data, which has been

consistent for the past few years, points to there being fewer external links on the mobile

versions of pages compared to the desktop versions. Despite Google rolling out mobile-first

indexing a few years ago, websites have not brought their mobile versions to parity with their

desktop counterparts.

Anchor rel attribute use

In September of 2019, Google introduced attributes336 that allow publishers to classify links as

Figure 10.35. Median external links.

336. https://webmasters.googleblog.com/2019/09/evolving-nofollow-new-ways-to-identify.html

Part II Chapter 10 : SEO

332 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/seo/median-external-links.png
https://almanac.httparchive.org/static/images/2022/seo/median-external-links.png
https://webmasters.googleblog.com/2019/09/evolving-nofollow-new-ways-to-identify.html

being sponsored or user-generated content. These attributes are in addition to rel=nofollow ,

which was previously introduced in 2005337. The newer attributes, rel=ugc and

rel=sponsored , add additional information to the links.

Not much has changed in terms of the adoption of the newer attributes, with rel=ugc
appearing on 0.4% of desktop and mobile pages, and rel=sponsored appearing on 0.5% of

desktop and 0.4% of mobile pages in 2022.

rel="dofollow" once again appeared on more pages than rel="ugc" and

rel="sponsored" . While this is technically not a problem, Google ignores rel="follow"
and rel="dofollow" because, despite their inclusion, they are not actually official

attributes.

rel="nofollow" , which is a real attribute, was found in 2022 on 29.5% of mobile pages,

which is 1.2% less than last year. Google treats nofollow as a hint, meaning the search engine

can choose whether or not they respect the attribute.

AMP

AMP has been a controversial topic since its launch in 2015, with SEOs debating whether or not

Figure 10.36. Achor rel attribute usage.

337. https://googleblog.blogspot.com/2005/01/preventing-comment-spam.html

Part II Chapter 10 : SEO

2022 Web Almanac by HTTP Archive 333

https://googleblog.blogspot.com/2005/01/preventing-comment-spam.html
https://almanac.httparchive.org/static/images/2022/seo/anchor-rel-attr.png
https://almanac.httparchive.org/static/images/2022/seo/anchor-rel-attr.png

it had a direct impact on rankings. Google later released this statement (below) in its

documentation for additional clarification:

The future of AMP appears to be changing ever since the launch of Core Web Vitals. A main

reason for previously implementing AMP, aside from improving page speed, was that it was

necessary for inclusion in Top Carousels. In 2021, Google updated its requirements and

outlined that any page is now eligible to appear in Top Carousels with or without AMP.

Desktop usage has dipped in 2022 from 0.09% to 0.07% compared to 2021 while mobile usage

is down from 0.22% to 0.19% over the same time period.

— Google Search Central338

While AMP itself isn’t a ranking factor, speed is a ranking factor for Google

Search. Google Search applies the same standard to all pages, regardless of

the technology used to build the page. "

Figure 10.37. AMP markup types.

338. https://developers.google.com/search/docs/advanced/experience/about-amp

Part II Chapter 10 : SEO

334 2022 Web Almanac by HTTP Archive

https://developers.google.com/search/docs/advanced/experience/about-amp
https://almanac.httparchive.org/static/images/2022/seo/amp-markup.png
https://almanac.httparchive.org/static/images/2022/seo/amp-markup.png

Internationalization

Internationalization in SEO is the process of optimizing a website in line with best practices

when targeting multiple countries and multiple languages, to ensure that it can be properly

crawled and indexed by search engines.

Hreflang usage

Hreflang tags help Google and other search engines, such as Bing and Yandex, understand what

the main language is on a given page. It is primarily used in international SEO campaigns when

several different languages are used across different versions of a website.

Currently, 9.6% of sites use hreflang tags on desktop while 8.9% use them on mobile. This is a

slight increase from 2021 when 9.0% of sites used hreflangs tags on desktop and 8.4%

implemented them on mobile.

Figure 10.38. Hreflang usage.

Part II Chapter 10 : SEO

2022 Web Almanac by HTTP Archive 335

https://almanac.httparchive.org/static/images/2022/seo/hreflang-usage.png
https://almanac.httparchive.org/static/images/2022/seo/hreflang-usage.png

The most popular hreflang tag in 2022 is en [English], which accounts for 5.4% usage on

desktop and 4.7% on mobile. Those percentages are approximately the same as the year before.

After x-default, which is the “fallback” version (and the second most common to be adopted),

the hreflang tags for French, German and Spanish are the next most frequently used.

The three different ways to implement hreflang tags are via the <head> , link headers, or XML

sitemaps. Note: As this data is looking solely at homepages, XML sitemaps are not included.

Content language usage

While Google tends to use hreflang tags, other search engines such as Bing prefer the

content-language attribute. This can be implemented using two methods:

1. HTML

2. HTTP Header

Figure 10.39. Language usage (HTML and HTTP header).

Part II Chapter 10 : SEO

336 2022 Web Almanac by HTTP Archive

https://developer.mozilla.org/docs/Web/HTTP/Headers/Content-Language
https://developer.mozilla.org/docs/Web/HTTP/Headers/Content-Language
https://almanac.httparchive.org/static/images/2022/seo/content-language.png
https://almanac.httparchive.org/static/images/2022/seo/content-language.png

In 2022, HTTP server response is the most popular implementation method of content-

language, with 8.27% of mobile sites using this and 8.82% of desktop sites. However this has

seen a decline in adoption on mobile compared to 2021 when 9.3% of mobile sites used it.

Conversely, desktop has seen a slight increase compared to 2021 when 8.7% of sites used it.

HTML, on the other hand, has 2.98% adoption on desktop in 2022 and 3.01% adoption on

mobile. But again there’s a decline in mobile usage compared to 2021 when 3.3% of mobile sites

used the HTML tag.

Conclusion

Much like patterns in our data from 2021339, 2020340, and 2019341, the majority of sites analyzed

are showing small, yet consistent, improvement when it comes to various fundamentals of SEO,

including having indexable and crawlable pages.

We have also seen an increasing focus on performance elements such as Core Web Vitals, with

39% of sites now having passing scores compared to just 20% in 2020 when the update was

first announced. This seems to indicate sites are now taking Google’s guidance more to heart.

Still, more work needs to be done across the web.

Newer introductions, such as the indexifembedded tag, are seeing slow pick-up. This

underscores the continuous need for adoption of best practices and how much opportunity for

growth there is in SEO, search engine friendliness, and the state of the web in general.

Authors

Sophie Brannon

@SophieBrannon SophieBrannon

Sophie is the Client Services Director at UK-based agency Absolute Digital Media

and specializes in SEO strategy and content marketing in highly competitive

industries such as health and finance. Sophie is a conference speaker and industry

blogger, and has proven experience in strategizing and delivering award-winning

campaigns on a local, national and international scale.

339. https://almanac.httparchive.org/en/2021/seo
340. https://almanac.httparchive.org/en/2020/seo
341. https://almanac.httparchive.org/en/2019/seo

Part II Chapter 10 : SEO

2022 Web Almanac by HTTP Archive 337

https://almanac.httparchive.org/en/2021/seo
https://almanac.httparchive.org/en/2020/seo
https://almanac.httparchive.org/en/2019/seo
https://twitter.com/SophieBrannon
https://github.com/SophieBrannon

Itamar Blauer

@ItamarBlauer itamarblauer https://www.itamarblauer.com/

Itamar Blauer is an SEO expert based in London. He has a proven track-record of

increasing rankings with SEO that is UX-focused, data-backed, and creative.

Mordy Oberstein

mordy-oberstein

Mordy Oberstein is the Head of SEO Branding at Wix. He also serves as a

consultant for SEMrush and sits behind the mic of multiple SEO podcasts,

including the SERP’s Up podcast.

Part II Chapter 10 : SEO

338 2022 Web Almanac by HTTP Archive

https://twitter.com/ItamarBlauer
https://github.com/itamarblauer
https://www.itamarblauer.com/
https://github.com/mordy-oberstein

Part II Chapter 11

Accessibility

Written by Saptak Sengupta, Thibaud Colas, and Scott Davis
Reviewed by Shaina Hantsis
Analyzed by Thibaud Colas
Edited by Kirsty Simmonds

Introduction

27% of the global online population is using voice search on mobile342. 85% of Facebook videos

are watched with closed captions on and sound off343. When you ask voice assistants like Siri,

Alexa, and Cortana a question, they typically read their answer from a web page using screen

reader technology that has been around for as long as personal computers have existed344.

When does a software feature cease being an “accessibility feature” and simply become a

“feature” that we all use? Ask yourself that the next time you put your smartphone in silent/

vibrate mode – especially if you’re not a member of the Deaf/Hard of Hearing community.

Good accessibility benefits everyone, not just those with disabilities. This is one of the core

principles of Universal Design345. Tim Berners-Lee said, “The power of the Web is in its

342. https://www.gwi.com/hubfs/Downloads/Voice-Search-report.pdf
343. https://idearocketanimation.com/18761-facebook-video-captions/
344. https://www.theverge.com/23203911/screen-readers-history-blind-henter-curran-teh-nvda
345. https://en.wikipedia.org/wiki/Universal_design

Part II Chapter 11 : Accessibility

2022 Web Almanac by HTTP Archive 339

https://www.gwi.com/hubfs/Downloads/Voice-Search-report.pdf
https://idearocketanimation.com/18761-facebook-video-captions/
https://www.theverge.com/23203911/screen-readers-history-blind-henter-curran-teh-nvda
https://en.wikipedia.org/wiki/Universal_design

universality. Access by everyone regardless of disability is an essential aspect.” After the

COVID-19 pandemic started, more and more people have been reliant on the internet.

Likewise, accessibility needs to improve as well, or we risk alienating a lot of people.

The median overall site score for all Lighthouse Accessibility audit data rose from 80% in 2020

to 82% in 2021, then 83% in 2022. We hope that this increase represents a shift in the right

direction.

Although the state of web accessibility still leaves a lot to be desired, we did see an overall

improvement in sites’ accessibility this year. The median overall site score for all Lighthouse

Accessibility audit data rose from 80% in 2020 to 82% in 2021, then 83% in 2022. Looking at

Lighthouse results audit-by-audit gives us a sense of what specific improvements have been

made.

Looking at Lighthouse audits reporting results, out of 41 automated checks, 35 passed

successfully on more sites in 2022 compared to 2021. 11 audits show improvements greater

than 1%, with aria-required-children , aria-tooltip-name , definition-list ,

html-has-lang , and object-alt showing the most noteworthy increases. We hope that

this increase represents a shift in the right direction.

In the hope of improvement towards accessibility in the web, we have tried to write the chapter

with some actionable links and solutions that people can follow. For consistency, we chose to

use the person-first term “people with disabilities” throughout this chapter, though we

acknowledge that the identity-first term “disabled people” is also used. Our choice in

Figure 11.1. Lighthouse audit improvements year-over-year.

Part II Chapter 11 : Accessibility

340 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/accessibility/lighthouse-audit-improvements-yoy.png
https://almanac.httparchive.org/static/images/2022/accessibility/lighthouse-audit-improvements-yoy.png
https://web.dev/aria-required-children/
https://web.dev/aria-required-children/
https://web.dev/aria-name/
https://web.dev/aria-name/
https://web.dev/definition-list/
https://web.dev/definition-list/
https://web.dev/html-has-lang/
https://web.dev/html-has-lang/
https://web.dev/object-alt/
https://web.dev/object-alt/

terminology is in no way prescriptive of which term is most appropriate.

Ease of reading

Readability of information and content on the web is crucial. There are a number of factors in a

website that contribute to the content’s readability. These factors ensure that everyone on the

internet can not only consume content, but also are not harmed by any aspect of the content.

Color contrast

Color contrast refers to how easily the foreground—which can include text, diagrams,

iconography or other pieces of information—stands out from the background of the section. A

higher color contrast usually means it’s easier for people to distinguish the content.

The minimum contrast requirement defined by the Web Content Accessibility Guidelines346

(WCAG) for normal sized text (up to 24px) is 4.5:1 for AA conformance and 7:1 for AAA

conformance. However, for larger font sizes, the contrast requirement is only 3:1 as larger text

has increased legibility even at a lower contrast.

We found that 22.9% of mobile sites have sufficient text color contrast, which is less than a 1%

Figure 11.2. Sites with sufficient color contrast.

346. https://www.w3.org/WAI/standards-guidelines/wcag/

Part II Chapter 11 : Accessibility

2022 Web Almanac by HTTP Archive 341

https://www.w3.org/WAI/standards-guidelines/wcag/
https://almanac.httparchive.org/static/images/2022/accessibility/color-contrast-2019-2020-2021-2022.png
https://almanac.httparchive.org/static/images/2022/accessibility/color-contrast-2019-2020-2021-2022.png

increase from last year. In 2022, we also have data for desktop sites, with 22.7% passing

automated text contrast checks. The color contrast issue—at least for the text-based color

contrasts that we tested—is pretty straightforward to validate even before you start building

the website. There are multiple tools that can help developers and designers to check color

contrast of text and graphical elements such as:

• Web Color Contrast Checker (by WebAIM)347

• Figma Plugin (by Stark)348

It’s a good idea to select a color scheme that passes color contrast requirements at the

beginning of a project or while addressing the issues and use it throughout the website. You can

also provide other color modes such as dark mode, light mode, high contrast modes to let the

user choose.

Zooming and scaling

Zooming is another feature that users with low vision often use to view the text in a website

better. There are system settings in the browser, as well as some magnifying tools that allow a

user to zoom and scale a website. Adrian Roselli349 talks in detail about the different reasons you

should not disable zoom350.

347. https://webaim.org/resources/contrastchecker/
348. https://www.figma.com/community/plugin/733159460536249875
349. https://twitter.com/aardrian
350. https://adrianroselli.com/2015/10/dont-disable-zoom.html

Part II Chapter 11 : Accessibility

342 2022 Web Almanac by HTTP Archive

https://webaim.org/resources/contrastchecker/
https://www.figma.com/community/plugin/733159460536249875
https://twitter.com/aardrian
https://adrianroselli.com/2015/10/dont-disable-zoom.html
https://adrianroselli.com/2015/10/dont-disable-zoom.html

WCAG requires that text in a website can be resized up to at least 200%. We have found that

23% of desktop homepages and 28% of mobile homepages attempt to disable zoom.

The method by which a developer disabled zoom is by adding a <meta name="viewport" >
tag with a value like maximum-scale, minimum-scale, user-scalable=no, or user-
scalable=0 in the content attribute. So if you have a website that has one of these values,

please delete those particular values from the content attribute to enable zoom.

Figure 11.3. Pages with zooming and scaling disabled.

Part II Chapter 11 : Accessibility

2022 Web Almanac by HTTP Archive 343

https://almanac.httparchive.org/static/images/2022/accessibility/pages-zooming-scaling-disabled.png
https://almanac.httparchive.org/static/images/2022/accessibility/pages-zooming-scaling-disabled.png

Of the top 1,000 most visited sites, 21% of desktop sites and 40% of mobile sites are built using

code that attempts to disable user zooming or scaling. This means that the percentage of sites

with zooming disabled is almost double on mobile compared to desktop. It’s really important to

not disable zooming on any device. To combat this, browsers have begun to override

developers’ attempts to disable zoom. Manuel Matuzović351 wrote an article talking about the

concerns with disabling zoom and user settings in browsers352.

Figure 11.4. Pages with zooming and scaling disabled by rank.

351. https://twitter.com/mmatuzo
352. https://www.matuzo.at/blog/2022/please-stop-disabling-zoom/

Part II Chapter 11 : Accessibility

344 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/accessibility/pages-zooming-scaling-disabled-by-rank.png
https://almanac.httparchive.org/static/images/2022/accessibility/pages-zooming-scaling-disabled-by-rank.png
https://twitter.com/mmatuzo
https://www.matuzo.at/blog/2022/please-stop-disabling-zoom/

Another thing to keep in mind is the unit you choose for font size. We found that 71% of pages

in desktop use px , and only 15% and 6% use em and rem respectively. So the percentage of

px usage in desktop has increased by 2% compared to last year, while em usage has

decreased by 2%. It’s considered wise to use relative units such as em or rem when it comes

to font-size because if you use px it will not scale353 if the user explicitly choses a bigger or

smaller default font size in the browser settings.

Language identification

Language identification using the lang attribute is important for providing better screen

reader support, and also helps for automatic browser translations. This is another good

example of a feature that helps everyone, including people with disabilities. Without the lang
attribute, the automatic browser translation in Chrome can often translate the text incorrectly.

Manuel Matuzović gives one such example of an auto-translate mishap354 due to the lack of a

lang attribute.

Figure 11.5. Font unit usage.

353. https://adrianroselli.com/2019/12/responsive-type-and-zoom.html#Update02
354. https://www.matuzo.at/blog/lang-attribute/

Part II Chapter 11 : Accessibility

2022 Web Almanac by HTTP Archive 345

https://almanac.httparchive.org/static/images/2022/accessibility/font-unit-usage.png
https://almanac.httparchive.org/static/images/2022/accessibility/font-unit-usage.png
https://adrianroselli.com/2019/12/responsive-type-and-zoom.html#Update02
https://www.matuzo.at/blog/lang-attribute/

It’s encouraging to see that 83% of mobile websites do have a lang attribute, and within that

group, over 99% have a valid value. There’s still room for improvement given this is a Level A

conformance issue under WCAG 2.1. To meet this success criteria, one can put the lang
attribute in the <html> tag with a known primary language tag355. The lang attribute is a

global attribute and can be set on other tags as well in case the web page has content in more

than one language. It’s important to define the correct language for a website. In cases where

people copy a template to create a website, there is sometimes a discrepancy between the

language used in the website’s content and the lang="en" attribute used in the code.

User preference

There are certain User Preference Media Queries from the CSS Media Queries Level 5

specification356 that can be used for various accessibility features. These range from choosing a

color scheme or contrast mode that works better for the user to reducing animations on the

page, which is helpful to people with vestibular disorders.

Figure 11.6. Mobile sites have a valid lang attribute.

83%

355. https://www.w3.org/WAI/standards-guidelines/act/rules/bf051a/#known-primary-language-tag
356. https://www.w3.org/TR/mediaqueries-5

Part II Chapter 11 : Accessibility

346 2022 Web Almanac by HTTP Archive

https://www.w3.org/WAI/standards-guidelines/act/rules/bf051a/#known-primary-language-tag
https://developer.mozilla.org/docs/Web/HTML/Global_attributes/lang
https://developer.mozilla.org/docs/Web/HTML/Global_attributes/lang
https://www.w3.org/TR/mediaqueries-5
https://www.w3.org/TR/mediaqueries-5

We found that 34% of mobile websites use prefers-reduced-motion . Websites that rely

on motion can cause issues for people with vestibular disorders, so it is important to adapt or

remove those animations with the prefers-reduced-motion media query. There are many

great resources357 related to designing accessible animation358.

8% of desktop and mobile websites used the prefers-color-scheme media query, while 1%

of desktop and mobile sites used prefers-contrast . Both of these media queries improve

content readability by adjusting the display mode359 based on the user’s preference. prefers-
color-scheme allows the browser to detect the user’s system color. Using this information,

the web developer can then provide a light or dark mode accordingly. prefer-contrast is

useful for users with low vision or photosensitivity who may benefit from high contrast modes.

Forced colors mode

Forced colors mode is an accessibility feature intended to increase the readability of text

through color contrast. In forced colors mode, the user’s operating system takes over control of

most color-related styles. Common patterns such as background images are completely

disabled, so text-to-background contrast is more predictable. Its best-known implementation is

the High Contrast Mode in Windows, renamed Contrast Themes in Windows 11. Those themes

provide alternative low and high contrast color palettes, as well as the ability to customize any

Figure 11.7. User preference media queries.

357. https://alistapart.com/article/designing-safer-web-animation-for-motion-sensitivity/
358. https://www.a11yproject.com/posts/design-accessible-animation/
359. https://www.a11yproject.com/posts/operating-system-and-browser-accessibility-display-modes/

Part II Chapter 11 : Accessibility

2022 Web Almanac by HTTP Archive 347

https://almanac.httparchive.org/static/images/2022/accessibility/userpreference-media-queries.png
https://almanac.httparchive.org/static/images/2022/accessibility/userpreference-media-queries.png
https://alistapart.com/article/designing-safer-web-animation-for-motion-sensitivity/
https://www.a11yproject.com/posts/design-accessible-animation/
https://www.a11yproject.com/posts/operating-system-and-browser-accessibility-display-modes/
https://support.microsoft.com/en-us/topic/fedc744c-90ac-69df-aed5-c8a90125e696

of the available system colors360.

Like other user preference media queries, we see a lot of websites making adjustments based

on forced colors mode. 8% of mobile sites and 9% of desktop sites use the forced-colors
media query to alter their styles, while usage of the legacy IE11-only -ms-high-contrast
media query is above 20% for both mobile and desktop. This doesn’t tell us to what extent sites

do support forced colors mode, but the data is encouraging nonetheless considering the

forced-colors media query has only been supported in major browsers since 2020361, and

support for emulating forced-colors mode on devices other than Windows is only available

since February 2022.

Navigation

When talking about navigating through websites, one thing that is important to

remember—and be cautious of—is that users may use a variety of methods and input devices.

Some people use a mouse to scroll through a page, others use their keyboard or a switch control

device, and some may use a screen reader to browse through the different heading levels.

When making a website, it’s important to ensure that the website works for everyone,

irrespective of the device or assistive technology that a person chooses to use.

Figure 11.8. Forced colors mode.

360. https://developer.mozilla.org/docs/Web/CSS/color_value/system_color_keywords
361. https://caniuse.com/mdn-css_at-rules_media_forced-colors

Part II Chapter 11 : Accessibility

348 2022 Web Almanac by HTTP Archive

https://developer.mozilla.org/docs/Web/CSS/color_value/system_color_keywords
https://almanac.httparchive.org/static/images/2022/accessibility/forced-colors-mode.png
https://almanac.httparchive.org/static/images/2022/accessibility/forced-colors-mode.png
https://caniuse.com/mdn-css_at-rules_media_forced-colors
https://developer.chrome.com/docs/devtools/rendering/emulate-css/
https://developer.chrome.com/docs/devtools/rendering/emulate-css/

Focus indication

Focus indication is really important for people who primarily rely on keyboard navigation or

switch control devices. These tools are often used by people with limited motor capacity. There

are many different switch control devices, from a single switch362 to a sip-and-puff device363.

Visible focus styles and proper focus orders are essential for such users to get a visual

indication of where they are on a page.

Focus styles

The WCAG requires a visible focus indicator for all interactive content to help people know

which element has the keyboard focus as they traverse through a page. In fact for WCAG 2.2364

(which is expected to be published in December 2022), it has been promoted from AA to Level

A365 .

We found that 86% of websites add :focus {outline: 0} . This removes the default

outline that browsers use for the focused interactive element. In some cases, they are

overridden using some custom styling, but not always. This makes it impossible for users to

determine which element has focus which in turn hinders navigation. Sara Soueidan366 has a

Figure 11.9. Pages overriding focus styles.

362. https://www.24a11y.com/2018/i-used-a-switch-control-for-a-day/
363. https://accessibleweb.com/assistive-technologies/assistive-technology-focus-sip-and-puff-devices/
364. https://w3c.github.io/wcag/guidelines/22/
365. https://w3c.github.io/wcag/guidelines/22/#focus-visible
366. https://twitter.com/SaraSoueidan

Part II Chapter 11 : Accessibility

2022 Web Almanac by HTTP Archive 349

https://www.24a11y.com/2018/i-used-a-switch-control-for-a-day/
https://accessibleweb.com/assistive-technologies/assistive-technology-focus-sip-and-puff-devices/
https://w3c.github.io/wcag/guidelines/22/
https://w3c.github.io/wcag/guidelines/22/#focus-visible
https://w3c.github.io/wcag/guidelines/22/#focus-visible
https://almanac.httparchive.org/static/images/2022/accessibility/pages-overriding-focus-styles.png
https://almanac.httparchive.org/static/images/2022/accessibility/pages-overriding-focus-styles.png
https://twitter.com/SaraSoueidan

great article on how to design WCAG-compliant focus indicators367. However, it’s exciting to see

that 9% of websites have :focus-visible compared to only 0.6% last year. This is definitely

a step in the right direction.

tabindex

tabindex is an attribute that can be added to elements to control whether they can receive

focus. Depending on its value, the element can also be organized within the keyboard focus or

“tab” order.

We found that 60% of mobile websites and 62% of desktop websites use tabindex . The

tabindex attribute can be used for a few different purposes, which may or may not cause

accessibility issues:

• Adding tabindex="0" adds an element in the sequential keyboard focus order.

Custom elements and widgets that are intended to be interactive need an explicitly

assigned tabindex="0" .

• tabindex="-1" means that the element is not in the keyboard focus order, but

can be programmatically focused using JavaScript.

• A positive value for tabindex is used to override the keyboard focus order and

most of the time leads to a WCAG 2.4.3 - Focus Order368 failure

It’s important to remember that placing non-interactive elements in the keyboard focus order

can be confusing for low-vision users and should hence be avoided.

367. https://www.sarasoueidan.com/blog/focus-indicators/
368. https://www.w3.org/TR/UNDERSTANDING-WCAG20/navigation-mechanisms-focus-order.html

Part II Chapter 11 : Accessibility

350 2022 Web Almanac by HTTP Archive

https://www.sarasoueidan.com/blog/focus-indicators/
https://www.w3.org/TR/UNDERSTANDING-WCAG20/navigation-mechanisms-focus-order.html

Out of all websites with tabindex attribute, 7% have tabindex with a positive value. Using

positive values for tabindex is generally bad practice since it disrupts the normal navigation.

Karl Groves369 has a great article370 that explains this concept further.

Landmarks

Landmarks help divide a web page into thematic regions that makes it easier for users of

assistive technologies to understand the page structure and navigate the website. For example,

a rotor menu371 can be used to navigate between different page landmarks, while skip links372 can

be used to target landmarks, including <main> . Landmarks can be created using various

HTML5 elements or explicitly adding ARIA landmark roles373. However, following the first rule of

ARIA, one should give preference to native HTML5 elements whenever possible.

Figure 11.10. tabindex usage.

369. https://twitter.com/karlgroves
370. https://karlgroves.com/2018/11/13/why-using-tabindex-values-greater-than-0-is-bad
371. https://www.afb.org/blindness-and-low-vision/using-technology/cell-phones-tablets-mobile/apple-ios-iphone-and-ipad-2
372. https://webaim.org/techniques/skipnav/
373. https://www.w3.org/TR/WCAG20-TECHS/ARIA11.html

Part II Chapter 11 : Accessibility

2022 Web Almanac by HTTP Archive 351

https://almanac.httparchive.org/static/images/2022/accessibility/tabindex-usage-and-values.png
https://almanac.httparchive.org/static/images/2022/accessibility/tabindex-usage-and-values.png
https://twitter.com/karlgroves
https://karlgroves.com/2018/11/13/why-using-tabindex-values-greater-than-0-is-bad
https://www.afb.org/blindness-and-low-vision/using-technology/cell-phones-tablets-mobile/apple-ios-iphone-and-ipad-2
https://webaim.org/techniques/skipnav/
https://www.w3.org/TR/WCAG20-TECHS/ARIA11.html

The most commonly expected landmarks that the majority of web pages should have are

<main> , <header> , <nav> and <footer> . We found that only 31% of desktop and mobile

pages have a native HTML <main> element, while 17% of desktop pages have an element with

a role="main" , and 38% of pages have either <main> or role="main" . It’s good to see

the use of native elements increase. Scott O’ Hara374’s article on landmarks375 covers all the

details that one should keep in mind to ensure better accessibility.

Heading hierarchy

Headings help all users, including those using assistive technologies, to navigate through the

website. Users with assistive technologies can navigate to the exact sections that they are

interested in. As mentioned in Marcy Sutton376’s article on headings and semantic structure377 ,

headings can be thought of as a table of contents that one can navigate through to go to a

particular content area.

58% of websites pass the test for properly ordered headings that do not skip levels, which is the

same as last year. Hopefully this number will increase next year since the document outline

example in WHATWG standards have been updated378. A very important thing to remember is

Figure 11.11. Landmark element and role usage (desktop).

HTML5
element

ARIA role
equivalent

Pages
with

element

Pages
with
role

Pages with
element or

role

<main> role="main" 31% 17% 38%

<header> role="banner" 63% 13% 65%

<nav> role="navigation" 63% 22% 67%

<footer> role="contentinfo" 65% 11% 66%

Figure 11.12. Mobile sites passing the Lighthouse audit for properly ordered headings.

58%

374. https://twitter.com/scottohara
375. https://www.scottohara.me/blog/2018/03/03/landmarks.html
376. https://twitter.com/marcysutton
377. https://marcysutton.com/how-i-audit-a-website-for-accessibility#Headings-and-Semantic-Structure
378. https://github.com/whatwg/html/pull/7829

Part II Chapter 11 : Accessibility

352 2022 Web Almanac by HTTP Archive

https://twitter.com/scottohara
https://www.scottohara.me/blog/2018/03/03/landmarks.html
https://twitter.com/marcysutton
https://marcysutton.com/how-i-audit-a-website-for-accessibility#Headings-and-Semantic-Structure
https://github.com/whatwg/html/pull/7829
https://github.com/whatwg/html/pull/7829

that heading levels don’t have to represent the actual style (or importance) of a particular

element. Headings are to be used primarily for hierarchy purposes, while CSS can be used for

the styling of the element. A very good article on how to structure headings in your page is by

Steve Faulkner379 titled, “How to mark up subheadings, subtitles, alternative titles and

taglines”380.

Secondary navigation

WCAG requires websites to have multiple ways to navigate between the different pages apart

from the primary navigation menu in the header—see Success Criterion 2.4.5: Multiple Ways381.

For example many people, including those with cognitive limitations, prefer to use search

features to find a page when there are a substantial number of pages in a website.

There are 23% of websites on mobile that have a search input, and 24% on desktop. Another

recommended method for secondary navigation is to include a sitemap for a website. Although

we do not have any data about the presence of site maps, this technique guide from the W3C382

explains what they are in detail and how to implement one effectively.

Skip links

Skip links allow keyboard or switch control device users to skip through different sections of

pages without having to pass every focusable item. One of the most common sections to skip is

the primary navigation to go to the <main> section, especially if a website has a really large

number of interactive items in their primary navigation.

We found 21% of desktop and mobile pages likely have a skip link, allowing users to bypass part

of the page content. This figure could be higher in practice, as our detection only checks for the

presence of skip links early in the page (for example to skip navigation). Skip links can also be

used to skip parts of the page.

Figure 11.13. Mobile and desktop pages which likely have a skip link

21%

379. https://twitter.com/stevefaulkner
380. https://stevefaulkner.github.io/Articles/How%20to%20mark%20up%20subheadings,%20subtitles,%20alternative%20titles%20and%20taglines.html
381. https://www.w3.org/WAI/WCAG21/Understanding/multiple-ways.html
382. https://www.w3.org/WAI/WCAG21/Techniques/general/G63

Part II Chapter 11 : Accessibility

2022 Web Almanac by HTTP Archive 353

https://twitter.com/stevefaulkner
https://stevefaulkner.github.io/Articles/How%20to%20mark%20up%20subheadings,%20subtitles,%20alternative%20titles%20and%20taglines.html
https://stevefaulkner.github.io/Articles/How%20to%20mark%20up%20subheadings,%20subtitles,%20alternative%20titles%20and%20taglines.html
https://www.w3.org/WAI/WCAG21/Understanding/multiple-ways.html
https://www.w3.org/WAI/WCAG21/Techniques/general/G63

Document titles

Descriptive page titles are useful when navigating between pages, tabs and windows, as the

new page has its title read by assistive technologies to help users keep track of where they are.

Though there are 98% of mobile websites which have a document title, only 70% have a title

that is longer than four words. Since we only scan homepages of websites, it’s not possible for

us to determine if the inner pages of the website use a more detailed text in the <title> tag

that describes the page. A title should ideally have both the title of the website as well as a title

giving context about the page in the website for better navigation.

Tables

Tables help in representing data and the relationships between the data using two axes. Tables

should have a well-formatted structure with the appropriate elements and markups that helps

assistive technology users to easily comprehend the data represented in the table, as well as

navigate through the table. Table caption, appropriate headers and appropriate header cells for

every row are as such important elements that help users of assistive technology to make sense

of the data.

Figure 11.14. Title element statistics.

Part II Chapter 11 : Accessibility

354 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/accessibility/page_title-information.png
https://almanac.httparchive.org/static/images/2022/accessibility/page_title-information.png

When providing a caption for the table, the <caption> element is the correct semantic choice

to provide the most context to a screen reader user—though there are alternative ways of

labelling a table383. Table captions act as a heading summarizing the information of the table.

1.3% of desktop and mobile sites with table elements present used a <caption> .

Tables are also sometimes used for laying out pages, though with the arrival of Flexbox and Grid

properties in CSS, one should definitely avoid tables for any visual formatting. However, if there

is no other option, tables can set a role="presentation" . We observe 1% of tables using

this workaround.

Forms

Forms are one of the most common ways that users submit information to and interact with

websites. Whether it be logging into a site, creating a post on social media, or making a

purchase at an ecommerce site, all of those user journeys will at some stage require a form.

Without proper form accessibility, people with disabilities can’t interact with them properly

which in turn stops them from completing their tasks and achieving full information and feature

parity with non-disabled users.

There are specific things that one should keep in mind when it comes to accessibility in forms.

<label> element

The <label> element is the most effective way of providing accessible names to input fields

(or form controls384) in a form. One can link a <label> to a form control programmatically

using the for attribute. The for attribute should contain the value of the id attribute of

the form control element that you want to link it with. For example:

Figure 11.15. Accessible table usage.

Table sites All sites

Desktop Mobile Desktop Mobile

Captioned tables 5.4% 4.7% 1.3% 1.2%

Presentational table 1.2% 0.9% 0.6% 0.5%

383. https://www.w3.org/WAI/tutorials/tables/caption-summary/
384. https://developer.mozilla.org/docs/Learn/Forms/Basic_native_form_controls

Part II Chapter 11 : Accessibility

2022 Web Almanac by HTTP Archive 355

https://www.w3.org/WAI/tutorials/tables/caption-summary/
https://www.w3.org/WAI/tutorials/tables/caption-summary/
https://developer.mozilla.org/docs/Learn/Forms/Basic_native_form_controls

<label for="emailaddress">Email</label>

<input type="email" id="emailaddress">

The for attribute is important because without it, the <label> won’t be programmatically

linked to a corresponding form control. This affects the usability of the form as it’s likely that a

field does not have a semantically linked label unless another method is used.

38% of inputs have no accessible names, while only 19% use <label> . Without a proper

accessible name, a screen reader user or a voice-to-text user won’t be able to identify what data

an input is trying to collect. Often there are inputs on websites that don’t have any visible

labels, which causes issues for all users, or the input’s purpose isn’t clearly defined both visually

and programmatically. In select cases where a label can be visually excluded (such as a search

field), one must still add a screen reader-only <label> to provide the accessible name.

Figure 11.16. Where inputs get their accessible names from.

Part II Chapter 11 : Accessibility

356 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/accessibility/form-input-name-sources.png
https://almanac.httparchive.org/static/images/2022/accessibility/form-input-name-sources.png

placeholder attribute

The purpose of a placeholder attribute in a form control is to provide an example of the data

or format that the form control accepts. For example, <input type="text" id="credit-
card" placeholder="1234-5678-9999-0000"> lets the user know that a card number

should be entered with dashes in between every 4 digits.

However, unlike <label> elements, the placeholder attribute disappears the moment

someone starts typing or entering data. This can cause users with cognitive disabilities to get

disoriented about the data they were trying to input. Also, not all screen readers support the

placeholder attribute for accessible names which is also problematic. Hence, using the

placeholder attribute for accessible names can create many accessibility issues385 and should

be avoided .

62.7% of the websites surveyed have inputs with only a placeholder attribute and no

<label> element linked to it, which is extremely problematic. The HTML5 specification386

clearly states “The placeholder attribute should not be used as an alternative to a label.” It’s

important to provide a <label> to improve accessibility for all.

Figure 11.17. Use of placeholders on inputs.

385. https://www.smashingmagazine.com/2018/06/placeholder-attribute/
386. https://html.spec.whatwg.org/#the-placeholder-attribute

Part II Chapter 11 : Accessibility

2022 Web Almanac by HTTP Archive 357

https://www.smashingmagazine.com/2018/06/placeholder-attribute/
https://almanac.httparchive.org/static/images/2022/accessibility/placeholder-but-no-label.png
https://almanac.httparchive.org/static/images/2022/accessibility/placeholder-but-no-label.png
https://html.spec.whatwg.org/#the-placeholder-attribute

Requiring information

When websites gather input from their users, they need a clear way to indicate what

information is optional, and what information is required to submit. For example, in a form an

email address might be a required field, but a middle name can be an optional field. Before

HTML5 introduced the required attribute for <input> fields in 2014, a common convention

was to put an asterisk (*) in the label for required input fields. However, just using an asterisk is

only a visual indicator, and it provides no validation or sufficient information to assistive

technologies that a field is required.

— The W3C’s Placeholder Research387

Use of the placeholder attribute as a replacement for a label can reduce the

accessibility and usability of the control for a range of users including older

users and users with cognitive, mobility, fine motor skill or vision

impairments. "

387. https://www.w3.org/WAI/GL/low-vision-a11y-tf/wiki/Placeholder_Research

Part II Chapter 11 : Accessibility

358 2022 Web Almanac by HTTP Archive

https://www.w3.org/WAI/GL/low-vision-a11y-tf/wiki/Placeholder_Research

The required and aria-required attributes are two ways of telling an assistive

technology that an input field is not optional. The required attribute also prevents form

submission without an input, while aria-required only conveys the information to assistive

technology and doesn’t validate the input. We found that 67% of the sites use the required
attribute and 32% use aria-required . However, there are still 22% websites which only use

an asterisk (*) to indicate a field is required. That should definitely be avoided unless it is also

accompanied with required and aria-required .

Captchas

Websites often want to verify that the visitor is a human and not a bot, which is a program that

crawls through websites for many different purposes. For example, The Web Almanac is

created each year by sending out a similar kind of web crawler to gather information from

websites. These types of “human-only” tests are called a CAPTCHA – “Completely Automated

Public Turing Test, to Tell Computers and Humans Apart”.

Figure 11.18. How required inputs are specified.

Part II Chapter 11 : Accessibility

2022 Web Almanac by HTTP Archive 359

https://almanac.httparchive.org/static/images/2022/accessibility/form-required-controls.png
https://almanac.httparchive.org/static/images/2022/accessibility/form-required-controls.png

19% of mobile websites have one of two captcha implementations which we can detect. This

type of test can be difficult to solve for everyone (see CAPTCHAs Have an 8% Failure Rate388)

but would likely be more difficult for people with low vision and other vision or reading-related

disabilities. Also, such tests might fail under WCAG 3.3.7 Accessible Authentication389 once

WCAG 2.2 is released. W3C actually has a paper on alternatives to visual turing tests390 that is

definitely recommended.

Media on the web

Accessibility considerations become very crucial when it comes to media consumption on the

web. A lot of media is often designed in ways that people with disabilities can’t consume unless

alternative methods are provided. For example, a blind person or a person with a vision

impairment needs an audio description for an image or a video so that they can understand the

media. A screen reader can only create an audio description if an alternate text describing the

image or the video is present. Similarly, for people with hearing disabilities, captions on videos

or text tracks for audio are essential to accessing the material.

Images

Images on the web can have an alt attribute which provides an alternate text description of

the image. A screen reader can then use this information to create an audio description of the

image for people with a visual impairment. We found that 59% of sites pass the test for images

with alt text, which is a small (1%) increase from 2021.

Figure 11.19. Mobile sites using a CAPTCHA

19%

Figure 11.20. Mobile pages passing the Lighthouse image-alt audit for images with alt text

59%

388. https://baymard.com/blog/captchas-in-checkout
389. https://w3c.github.io/wcag/understanding/accessible-authentication.html
390. https://www.w3.org/TR/turingtest/

Part II Chapter 11 : Accessibility

360 2022 Web Almanac by HTTP Archive

https://baymard.com/blog/captchas-in-checkout
https://w3c.github.io/wcag/understanding/accessible-authentication.html
https://www.w3.org/TR/turingtest/

The text in the alt attribute depends on the context. If the image is decorative and doesn’t

provide any meaningful information, then alt="" is ideal. However, if the image is crucial to

the context of the page, then a proper text description is essential. If the image is a child of a

link, then ideally the alt attribute should be used to label the link so the user knows where

the link takes them. We found that 7.5% of mobile web pages and 7.2% of desktop pages with

an alt attribute have a file extension assigned to that alt attribute. This probably means

that the alt attribute just contains the image filename, which is likely not helpful at all, and

should be avoided in every case.

Figure 11.21. Pages containing an alt attribute with a file extension.

Part II Chapter 11 : Accessibility

2022 Web Almanac by HTTP Archive 361

https://almanac.httparchive.org/static/images/2022/accessibility/pages-containing-alt-with-file-extension.png
https://almanac.httparchive.org/static/images/2022/accessibility/pages-containing-alt-with-file-extension.png

The top five file extensions explicitly included in the alt text value (for sites with images that

have non-empty alt values) are jpg, png, ico, jpeg and svg. This likely reflects the use of CMS or

other content management methods which auto-generate alternative text for images or ask the

content editors for image descriptions compulsorily. However, if the CMS just puts the image

filename in the alt attribute, this often provides no value to the users, so it’s important that

meaningful text descriptions are provided.

Figure 11.22. Most common file extensions in alt text.

Part II Chapter 11 : Accessibility

362 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/accessibility/common-file-extensions-in-alt-text.png
https://almanac.httparchive.org/static/images/2022/accessibility/common-file-extensions-in-alt-text.png

We found that 27% of alt text attributes in desktop and mobile websites were empty. An empty

alt attribute is supposed to be used only when the image is presentational and should not be

described by screen readers or other assistive technologies. However, most images on the web

do add value to the content in the web page391 and hence should have a proper text description.

We found that 15.3% have 10 or fewer characters, which would be a strangely short

description for most images, indicating that information parity has not been achieved. Though it

is possible that some of them might be used to provide labeling for a link, in which case it’s okay.

Audio and video

<track> allows providing timed textual content for <audio> and <video> elements. This

can be for subtitles, captions, descriptions, or chapters. Captions allow people with permanent

or temporary hearing loss to be able to consume the audio content. Descriptions allow blind

screen reader users to understand what is happening in the video.

Figure 11.23. alt attribute lengths.

391. https://www.smashingmagazine.com/2021/06/img-alt-attribute-alternate-description-decorative/

Part II Chapter 11 : Accessibility

2022 Web Almanac by HTTP Archive 363

https://almanac.httparchive.org/static/images/2022/accessibility/alt-attribute-lengths.png
https://almanac.httparchive.org/static/images/2022/accessibility/alt-attribute-lengths.png
https://www.smashingmagazine.com/2021/06/img-alt-attribute-alternate-description-decorative/
https://www.smashingmagazine.com/2021/06/img-alt-attribute-alternate-description-decorative/

<track> loads one or more WebVTT files, which allows text content to be synchronized with

the audio it is describing. When looking at only sites with a detectable <audio> element, we

found that only 0.06% of all pages on desktop and 0.09% of all pages on mobile with had at least

one accompanying <track> element. Looking at all <audio> elements, we see only 0.03%

and 0.05% respectively include a <track> .

The <track> element was included with a corresponding <video> element less than 1% of

the time — 0.71% for desktop sites, and 0.65% for mobile sites. These data points do not include

audio or video embedded via an <iframe> element, which is common for content like

podcasts or YouTube videos. It should also be noted that most popular third-party audio and

video embedding services include the ability to add synchronized text equivalents.

Assistive technology with ARIA

Accessible Rich Internet Applications, or ARIA392 defines a set of attributes for HTML5 elements

that can be used to make web content more accessible for people with disabilities. However,

overuse of ARIA can cause more issues than improvements to accessibility. It is always

recommended to use ARIA attributes only when using HTML5 is not sufficient to create a fully

accessible experience. It should not be used as a replacement of native HTML5 elements, or

overused unnecessarily.

ARIA roles

When an assistive technology encounters an element, the element’s role communicates

information about how someone might interact with its content.

Figure 11.24. Desktop websites with an <audio> element have at least one accompanying

<track> element

0.06%

Figure 11.25. Desktop <video> elements with an accompanying <track> element

0.71%

392. https://www.w3.org/TR/using-aria/

Part II Chapter 11 : Accessibility

364 2022 Web Almanac by HTTP Archive

https://www.w3.org/TR/using-aria/

For example, Tabbed interfaces393 are one of the most commonly used UI elements that need

various ARIA roles to be defined explicitly to convey the structure of the UI properly. A

common implementation for an accessible tabbed interface is mentioned in the WAI-ARIA

Authoring Practices Design Patterns394. When creating a tablist widget, a tablist role can be

assigned to the container element since there is no native HTML equivalent.

HTML5 introduced many new native elements which have implicit semantics, including roles.

For example, the <nav > element has an implicit role="navigation" and does not need to

have this role added explicitly via ARIA.

Currently 72% of desktop pages have at least one instance of an ARIA role attribute. The

median site has four instances of the role attribute.

Figure 11.26. Number of ARIA roles used by percentile.

393. https://inclusive-components.design/tabbed-interfaces/
394. https://www.w3.org/TR/wai-aria-practices-1.1/#tabpanel

Part II Chapter 11 : Accessibility

2022 Web Almanac by HTTP Archive 365

https://inclusive-components.design/tabbed-interfaces/
https://www.w3.org/TR/wai-aria-practices-1.1/#tabpanel
https://www.w3.org/TR/wai-aria-practices-1.1/#tabpanel
https://almanac.httparchive.org/static/images/2022/accessibility/sites-using-role.png
https://almanac.httparchive.org/static/images/2022/accessibility/sites-using-role.png

We found that 33% (up from 29% in 2021, and 25% in 2020) of desktop and mobile sites had

homepages with at least one element with an explicitly assigned role="button" . This

increase in percentage is likely not good since this indicates that websites are either creating

custom buttons using <div> or , or are adding a redundant role to <button>
elements. Both of these are bad practices and go against the first rule of ARIA395. Following this

rule, one should always use a native HTML element—in this case, <button> —when possible.

Adding an ARIA role tells assistive technology what the element is, but doesn’t provide any

Figure 11.27. Top 10 most common ARIA roles.

Figure 11.28. Desktop websites have at least one link with a button role

21%

395. https://www.w3.org/TR/using-aria/#rule1

Part II Chapter 11 : Accessibility

366 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/accessibility/top-10-aria-roles.png
https://almanac.httparchive.org/static/images/2022/accessibility/top-10-aria-roles.png
https://www.w3.org/TR/using-aria/#rule1

other functionality to make elements behave like their native counterpart. For example, we

found that 21% of websites had at least one link with a role="button" . This kind of pattern

can cause issues with keyboard navigation, as links and buttons have different interactions.

Though both links and buttons are interactive, links are not activated with the space key,

whereas buttons are.

Using the presentation role

When an element has role="presentation" declared on it, its semantics are stripped away,

as well the semantics of any of its child elements if those child elements are required child

elements (such as li nested under a ul element, or rows and cells in a table). For example,

declaring role="presentation" on a parent table or list element will cascade the role to

their required child elements and none of them will have table or list semantics.

Removing an element’s semantics causes an element to lose its behavior. It becomes only

visually present, and assistive technologies fail to understand the structure of the element and

cannot convey that message to the user. For example, a list with a role="presentation"
will no longer communicate any information to a screen reader about the list structure. We

found that 25% of desktop pages and 24% of mobile pages have at least one element with

role="presentation" .

The same effect of semantic removal takes place with role="none" . We found that this year,

the percentage of role="none" has also increased to 11% and is one of the top 10 most

common ARIA roles. There are very few use cases where this is particularly helpful for assistive

technology users, for example if there is a <table> element being used only for layout. But it

can otherwise be harmful and should be used sparingly.

Most browsers ignore role="presentation" and role="none" on focusable elements,

including links and inputs, or anything with a tabindex attribute set. Browsers also ignore the

Figure 11.29. Mobile websites have at least one element with role=presentation

24%

Figure 11.30. Mobile websites have at least one element with role=none

11%

Part II Chapter 11 : Accessibility

2022 Web Almanac by HTTP Archive 367

inclusion of the role if any of the element contains any global ARIA states and properties, such

as aria-describedby .

Labeling elements with ARIA

Parallel to the DOM there is a similar browser structure called the accessibility tree. It contains

information about HTML elements including accessible names, descriptions, roles and states.

This information is conveyed to assistive technologies through accessibility APIs.

The accessible name can be derived from an element’s content (such as button text), an

attribute (such as an image alt attribute value), or an associated element (such as a

programmatically associated label for a form control). There is a specificity ranking that is used

to determine where the element gets its accessible name from if there are multiple potential

sources. Léonie Watson396’s article, What is an accessible name?397 is a great source to learn more

about accessible names.

Figure 11.31. Top 10 ARIA attributes.

396. https://twitter.com/LeonieWatson
397. https://developer.paciellogroup.com/blog/2017/04/what-is-an-accessible-name/

Part II Chapter 11 : Accessibility

368 2022 Web Almanac by HTTP Archive

https://twitter.com/LeonieWatson
https://developer.paciellogroup.com/blog/2017/04/what-is-an-accessible-name/
https://almanac.httparchive.org/static/images/2022/accessibility/top10-aria-attributes.png
https://almanac.httparchive.org/static/images/2022/accessibility/top10-aria-attributes.png

There are two ARIA attributes that help in providing elements with an accessible name: aria-
label and aria-labelledby . These attributes will be preferred over the native derived

accessible name so they should be used very carefully and only when necessary. It’s always a

good idea to test the accessible names obtained with a screen reader, and involve people with

disabilities to confirm that it is actually helpful and doesn’t make the content more inaccessible.

We found that 58% of desktop pages and 57% of mobile home pages had at least one element

with the aria-label attribute, making it the most popular ARIA attribute for providing

accessible names. We found that 24% of desktop pages and 23% of mobile pages had at least

one element with the aria-labelledby attribute. This could mean that more elements now

have accessible names but it may also be indicative that more elements now lack a visual label

which can be problematic for people with cognitive disabilities and voice to text users (see

<label> element).

Buttons typically get their accessible names from their content or an ARIA attribute. Per the

first rule of ARIA, if an element can derive its accessible name without the use of ARIA, this is

preferable. Therefore a <button> should get its accessible name from its text content rather

than an ARIA attribute if possible.

We found that 61% of buttons on desktop and 58% in mobile sites get their accessible name

Figure 11.32. Button accessible name source.

Part II Chapter 11 : Accessibility

2022 Web Almanac by HTTP Archive 369

https://almanac.httparchive.org/static/images/2022/accessibility/button-name-sources.png
https://almanac.httparchive.org/static/images/2022/accessibility/button-name-sources.png

from content which is good. We also found that 20% of buttons on desktop sites and 23% of

buttons on mobile sites get their accessible names from the aria-label attribute.

There are a few cases where an aria-label can help. For example, if the page has multiple

buttons with the same content, but different purposes, then an aria-label can be used to

provide a better accessible name. Sometimes developers also use aria-label when the

button has only an image or icon, which might be a reason why more mobile sites use the

aria-label , rather than the content, to define accessible names.

Hiding content

Sometimes the visual interface can contain some redundant elements that are unhelpful for

users of assistive technologies. In such cases aria-hidden="true" can be used to hide the

element from screen readers. However, they should never be used if omitting such an element

would provide a screen reader user with less information than the visual interface. Hiding

content from assistive technologies should never be used to skip over content that is

challenging to make accessible.

We found that 58% of desktop pages and 57% of mobile pages had at least one instance of an

element with the aria-hidden attribute. Hiding and showing content is a prevalent pattern

in modern interfaces, and it can be helpful to declutter the UI for everyone.

It’s important to use the proper aria attribute to convey the correct message. For example,

disclosure widgets should be making use of the aria-expanded attribute to indicate to

assistive technology that something is revealed by expanding when the control is activated and

hidden when activated again. We found that 29% of desktop pages and 28% of mobile pages

had at least one element with the aria-expanded attribute.

Screen reader-only text

A common technique that developers employ to supply additional information for screen

reader users is to use CSS to visually hide a passage of text but make it discoverable by a screen

reader. This CSS code398 is used such that it’s present in the accessibility tree but hidden visually.

Figure 11.33. Desktop websites having at least one instance of the aria-hidden attribute

58%

398. https://css-tricks.com/inclusively-hidden/

Part II Chapter 11 : Accessibility

370 2022 Web Almanac by HTTP Archive

https://css-tricks.com/inclusively-hidden/

sr-only and visually-hidden are the most common class names used by developers and

by UI frameworks to achieve screen reader-only text. For example, Bootstrap and Tailwind use

sr-only classes for such elements. We found that 15% of desktop pages and 14% of mobile

pages had one or both of these CSS class names. It is important to keep in mind that not all

screen reader users are fully visually impaired, and thus one should avoid making too much use

of screen reader-only solutions.

Dynamically-rendered content

The presence of new or updated content in the DOM sometimes needs to be communicated to

screen readers. For example, form validation errors need to be conveyed whereas a lazy-loaded

image may not. Updates to the DOM also need to be done in a way that is not disruptive.

ARIA live regions allow us to listen for changes in the DOM, such that the updated content can

be announced by a screen reader. We found that 23% of desktop pages (up from 21% in 2021,

17% in 2020) and 22% of mobile pages (up from 20% in 2021, 16% in 2020) have live regions

using aria-live . In addition, pages also use live region ARIA roles399 with implicit aria-
live values:

Figure 11.34. Desktop websites with a sr-only or visually-hidden class

15%

Figure 11.35. Desktop pages with live regions using aria-live

23%

399. https://www.w3.org/TR/wai-aria-1.1/#live_region_roles

Part II Chapter 11 : Accessibility

2022 Web Almanac by HTTP Archive 371

https://www.w3.org/TR/wai-aria-1.1/#live_region_roles

The <output> element also deserves an honorable mention, as the only HTML element with

an implicit live region role that will announce its contents to end users. We see it used 16,144

times across our dataset for mobile sites and 12,120 times on desktop, or around 0.0002% of

elements usage.

For more information about live region variants and usage check out the MDN live region

documentation400 or play with this live demo by Deque401.

Accessibility apps and overlays

Accessibility overlays are tools claiming to automatically fix websites’ accessibility issues.

The Overlay Fact Sheet402 defines them as “a broad term for technologies that aim to improve

the accessibility of a website. They apply third-party source code (typically JavaScript) to

automate improvements to the front-end code of the website.”

Their vendors generally promise a quick and easy solution to online accessibility: integrate one

JavaScript snippet onto the site to make it compliant. Web accessibility is simply not possible to

achieve with an out of the box solution like this. Automated tools can only detect 30 to 50% of

accessibility issues403 to start with, and even for issues that can be detected, automated

remediation via an overlay cannot always reliably fix those issues.

Figure 11.36. Pages with live region ARIA roles, and their implicit aria-live value

Role Implicit aria-live value Desktop Mobile

status polite 5.6% 5.1%

alert assertive 3.7% 3.4%

timer off 0.6% 0.6%

log polite 0.4% 0.4%

marquee off 0.0% 0.0%

400. https://developer.mozilla.org/docs/Web/Accessibility/ARIA/ARIA_Live_Regions
401. https://dequeuniversity.com/library/aria/liveregion-playground
402. https://overlayfactsheet.com/#what-is-a-web-accessibility-overlay
403. https://alphagov.github.io/accessibility-tool-audit/

Part II Chapter 11 : Accessibility

372 2022 Web Almanac by HTTP Archive

https://developer.mozilla.org/docs/Web/HTML/Element/output
https://developer.mozilla.org/docs/Web/HTML/Element/output
https://developer.mozilla.org/docs/Web/Accessibility/ARIA/ARIA_Live_Regions
https://developer.mozilla.org/docs/Web/Accessibility/ARIA/ARIA_Live_Regions
https://dequeuniversity.com/library/aria/liveregion-playground
https://overlayfactsheet.com/#what-is-a-web-accessibility-overlay
https://alphagov.github.io/accessibility-tool-audit/
https://alphagov.github.io/accessibility-tool-audit/

We found that 1.6% of desktop websites use one of 22 specific accessibility apps we could

detect in 2022. This is a clear rise compared just under 1% in 2021.

Not all of those products are accessibility overlays, however the specific overlays we can detect

show a similar rise.

Figure 11.37. Pages using accessibility apps.

Part II Chapter 11 : Accessibility

2022 Web Almanac by HTTP Archive 373

https://almanac.httparchive.org/static/images/2022/accessibility/pages-using-a11y-apps.png
https://almanac.httparchive.org/static/images/2022/accessibility/pages-using-a11y-apps.png

UserWay is the most popular overlay in our dataset, in use by 0.49% of desktop websites and

0.39% on mobile, compared to 0.39% and 0.33% respectively in 2021.

Usage of overlays, and accessibility apps generally, is more rare for high-traffic websites. For

Figure 11.38. Accessibility app usage by rank.

Figure 11.39. Pages using accessibility apps by rank.

Part II Chapter 11 : Accessibility

374 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/accessibility/a11y-app-usage-by-rank.png
https://almanac.httparchive.org/static/images/2022/accessibility/a11y-app-usage-by-rank.png
https://almanac.httparchive.org/static/images/2022/accessibility/pages-using-a11y-apps-by-rank.png
https://almanac.httparchive.org/static/images/2022/accessibility/pages-using-a11y-apps-by-rank.png

sites ranked in the top 1,000 by visits, only 0.3% – or 3 websites – use an overlay.

Concerns with overlays

There is a lot of pushback against overlays, from accessibility advocates404 and users405 alike. The

National Federation of the Blind denounce the practices of accessiBe406 in particular, a company

known for their deceptive marketing, including fake reviews407:

accessiBe raised an additional $30M in 2022409, and is one of the overlays showing a clear rise in

usage year-to-year, from 0.27% of desktop sites and 0.21% of mobile sites in 2021, to 0.37%

and 0.25% in 2022.

Adrian Roselli’s #accessiBe Will Get You Sued410 is an excellent resource on the practical

implications of using such an overlay, including legal risks and privacy issues.

Conclusion

Our analysis shows that there hasn’t been much of a substantial change in the accessibility

issues seen across websites. Though there have been some improvements—for example,

adoption of :focus-visible has increased by almost 9% this year. Our analysis shows that

there are still a lot of straightforward fixes, such as color contrast and image alt attributes,

that could cause high impacts if addressed.

We see that there are often a lot of misuse of features that may give an illusion of things being

more accessible but in reality it often degrades the experience. For example, we see 20% of

websites have an anchor tag with role=button . Also, we see that 2.2% of alt attributes

across websites have a file extension in them, which almost certainly doesn’t help in conveying

the meaning of the image.

[…] the Board believes that accessiBe currently engages in behavior that is

harmful to the advancement of blind people in society. […] It seems that

accessiBe fails to acknowledge that blind experts and regular screen reader

users know what is accessible and what is not. The nation’s blind will not be

placated, bullied, or bought off.

— National Federation for the Blind408 "

404. https://overlayfactsheet.com/
405. https://www.vice.com/en/article/m7az74/people-with-disabilities-say-this-ai-tool-is-making-the-web-worse-for-them
406. https://nfb.org/about-us/press-room/national-convention-sponsorship-statement-regarding-accessibe
407. https://www.joedolson.com/2021/02/accessibe-the-fake-wordpress-plug-in-reviews/
408. https://nfb.org/about-us/press-room/national-convention-sponsorship-statement-regarding-accessibe
409. https://www.geektime.com/accessibe-raised-30m/
410. https://adrianroselli.com/2020/06/accessibe-will-get-you-sued.html

Part II Chapter 11 : Accessibility

2022 Web Almanac by HTTP Archive 375

https://overlayfactsheet.com/
https://www.vice.com/en/article/m7az74/people-with-disabilities-say-this-ai-tool-is-making-the-web-worse-for-them
https://nfb.org/about-us/press-room/national-convention-sponsorship-statement-regarding-accessibe
https://www.joedolson.com/2021/02/accessibe-the-fake-wordpress-plug-in-reviews/
https://nfb.org/about-us/press-room/national-convention-sponsorship-statement-regarding-accessibe
https://www.geektime.com/accessibe-raised-30m/
https://adrianroselli.com/2020/06/accessibe-will-get-you-sued.html

A lot of the accessibility issues that we see in our analysis can be avoided if designers and

developers start thinking about web accessibility from the very beginning and not as an

enhancement at the end. Like Anna E. Cook once said411, there’s “no MVP without accessibility”.

The web community needs to realize that a website only has a great User Experience when that

User Experience works for everyone, irrespective of the device and assistive technology used.

We have tried to focus on key metrics that can be easily addressed in the hope that in 2023 we

see the numbers improve.

Authors

Saptak Sengupta

@Saptak013 SaptakS https://saptaks.website

Saptak S is a human rights centered web developer, focusing on usability, security,

privacy and accessibility topics in web development. He is a contributor and

maintainer of various different open source projects like The A11Y Project412,

OnionShare413 and Wagtail414. You can find him blogging at saptaks.blog415.

Thibaud Colas

@thibaud_colas thibaudcolas https://thib.me/

Thibaud Colas is a web developer and open source contributor focusing on

accessibility topics. He is a core contributor to the Wagtail416 CMS, and a member

of the accessibility team for Django417.

Scott Davis

@scottdavis99 scottdavis99 http://thirstyhead.com

Scott Davis is an author and Digital Accessibility Advocate with Thoughtworks418,

where he focuses on leading-edge / innovative / emerging / non-traditional

aspects of web development. “Digital Accessibility is so much more than a

compliance checkbox; Accessibility is a springboard for innovation.”

411. https://twitter.com/annaecook/status/1404615552883060737
412. https://www.a11yproject.com
413. https://onionshare.org/
414. https://wagtail.org/
415. https://saptaks.blog
416. https://wagtail.org/
417. https://www.djangoproject.com/
418. https://www.thoughtworks.com/

Part II Chapter 11 : Accessibility

376 2022 Web Almanac by HTTP Archive

https://twitter.com/annaecook/status/1404615552883060737
https://twitter.com/Saptak013
https://github.com/SaptakS
https://saptaks.website/
https://www.a11yproject.com/
https://onionshare.org/
https://wagtail.org/
https://saptaks.blog/
https://twitter.com/thibaud_colas
https://github.com/thibaudcolas
https://thib.me/
https://wagtail.org/
https://www.djangoproject.com/
https://twitter.com/scottdavis99
https://github.com/scottdavis99
http://thirstyhead.com/
https://www.thoughtworks.com/

Part II Chapter 12

Performance

Written by Melissa Ada and Rick Viscomi
Reviewed by Barry Pollard, Patrick Meenan, Prathamesh Rasam, Estelle Weyl, and Kanmi Obasa
Analyzed by Rick Viscomi, Prathamesh Rasam, Sia Karamalegos, and Kanmi Obasa
Edited by Barry Pollard

Introduction

Web performance is crucial to user experience. We’ve all bounced from a site due to slow load

times, or worse, have not been able to access important information. Additionally, numerous

case studies419 have demonstrated that an improvement in web performance results in an

improvement in conversion and engagement for businesses. Surprisingly, the industry spotlight

is quite elusive for web performance—why is this? Some may say web performance is tough to

define and even more challenging to measure.

How do we measure something that is hard to define in the first place? As Sergey Chernyshev420,

creator of UX Capture421, says, “The best way to measure performance is to be embedded into the

user’s brain to understand exactly what they’re thinking as they use the site”. We can’t—and

shouldn’t in case that was unclear—do this, so what are our options?

419. https://wpostats.com/
420. https://twitter.com/sergeyche
421. https://github.com/ux-capture/ux-capture

Part II Chapter 12 : Performance

2022 Web Almanac by HTTP Archive 377

https://wpostats.com/
https://twitter.com/sergeyche
https://github.com/ux-capture/ux-capture

Thankfully, there’s a way to measure some aspects of performance automatically! We know the

browser is in charge of loading a page, and it goes through a checklist of steps each time.

Depending on which step the browser is on, we can tell how far along the site is in the page load

process. Conveniently, a number of performance timeline APIs422 are used to fire off timestamps

when the browser gets to certain page load steps.

It’s important to note that these metrics are only our best guess at how to gauge user

experience. For example, just because the browser fired an event that an element has been

painted onto the screen, does that always mean it was visible to the user at that time?

Additionally, as the industry grew, more and more metrics showed up while some became

deprecated. It can be complicated to know where to start and understand what performance

metrics are telling us about our users, especially for folks newer to the field.

This chapter focuses on Google’s solution to the problem: Core Web Vitals423 (CWV), web

performance metrics introduced in 2020 and made a signal in search ranking424 during 2021.

Each of the three metrics covers an important area of user experience: loading, interactivity,

and visual stability. The public Chrome UX Report425 (CrUX) dataset is Chrome’s view of how

websites are performing on CWV. There’s zero setup on the developer’s part; Chrome

automatically collects and publishes data from eligible websites426, for users who have opted in.

Using this dataset, we’re able to get insights into the web’s performance over time.

Although the spotlight of this chapter, it’s important to note that CWV are relatively new to the

field and not the only way to measure web performance. We chose to focus on these metrics

because the search ranking influence was effective almost exactly one year ago, and this year’s

data gives us insights on how the web is adjusting to this major shift in the industry and where

room for opportunity might still exist. CWV are a common baseline that allows performance to

be loosely comparable across sites, but it’s up to site owners to determine which metrics and

strategies are best for their sites. As much as we wish otherwise, there’s no way to fit the entire

history of the industry or all the different ways to evaluate performance in one chapter.

The CWV program suggests a clearly defined approach to measuring how users actually

experience performance—a first for the industry. Are CWV the answer to helping the web

become more performant? This chapter examines where the web is currently with CWV and

takes a look into the future.

Disclosure: This chapter is coauthored by an employee of Google, which created the Core Web Vitals

program. This chapter and its underlying analysis were reviewed and approved by others not affiliated

with Google.

422. https://developer.mozilla.org/docs/Web/API/Performance
423. https://web.dev/vitals/
424. https://developers.google.com/search/blog/2020/11/timing-for-page-experience
425. https://developer.chrome.com/docs/crux/
426. https://developer.chrome.com/docs/crux/methodology/#eligibility

Part II Chapter 12 : Performance

378 2022 Web Almanac by HTTP Archive

https://developer.mozilla.org/docs/Web/API/Performance
https://web.dev/vitals/
https://developers.google.com/search/blog/2020/11/timing-for-page-experience
https://developer.chrome.com/docs/crux/
https://developer.chrome.com/docs/crux/methodology/#eligibility

Core Web Vitals

Now that it’s been a year since CWV were added as a ranking signal in Google Search, let’s see

how the program may have influenced user experiences on the web.

In 2021, 29% of websites were assessed as having good CWV for mobile users. This was a

significant step up from 2020, representing a 5 percentage point increase. However, the

progress in 2022 was an even bigger leap forward, now with 39% of websites having good CWV

on mobile—representing a further 10 point increase!

44% of websites have good CWV on desktop. While this is better than mobile, the rate of

improvement for desktop experiences is not as rapid as mobile, so the gap is closing.

There are a few possible explanations for why mobile experiences tend to be worse than

desktop. While the portability of a pocket-sized computer is a great convenience, it may have

adverse effects on the user experience. As described in the Mobile Web chapter, the smaller

form factor has an impact on the amount of processing power that can be packed in, which is

further constrained by the high cost to own more powerful phones. Devices with poorer

processing capabilities take longer to perform the computations needed to render a web page.

The portability of these devices also means that they can be taken into areas with poor

connectivity, which hinders websites’ loading speeds. One final consideration is the way that

developers decide how to build websites. Rather than creating a mobile-friendly version of the

page, some websites may be serving desktop-sized images or unnecessary amounts of scripting

Figure 12.1. The percent of websites having good CWV, segmented by device and year.

Part II Chapter 12 : Performance

2022 Web Almanac by HTTP Archive 379

https://almanac.httparchive.org/static/images/2022/performance/good-core-web-vitals-by-device.png
https://almanac.httparchive.org/static/images/2022/performance/good-core-web-vitals-by-device.png

functionality. All of these things put mobile users at a disadvantage compared to desktop users

and may help to explain why their CWV performance is lower.

Many more websites were assessed as having good CWV in 2022 relative to 2021. But how

evenly distributed was that improvement across the web?

We segmented sites by their relative popularity (rank) and year, without distinguishing

between desktop and mobile. What’s interesting is that it seems websites across the board

generally got more performant this year, regardless of their popularity. The top 1,000 most

popular websites improved most significantly, a 16 percentage point increase to 53%, with all

ranks improving by 10 points or more. The most popular websites also tend to have the best

CWV experience, which is not too surprising if we assume that they have bigger engineering

teams and budgets.

To better understand why mobile experiences have gotten so much better this year, let’s dive

deeper into each individual CWV metric.

Largest Contentful Paint (LCP)

Largest Contentful Paint427 (LCP) is the time from the start of the navigation until the largest

Figure 12.2. The percent of websites having good CWV, segmented by rank and year.

427. https://web.dev/lcp/

Part II Chapter 12 : Performance

380 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/performance/good-cwv-performance-by-rank-and-year.png
https://almanac.httparchive.org/static/images/2022/performance/good-cwv-performance-by-rank-and-year.png
https://web.dev/lcp/

block of content is visible in the viewport. This metric represents how quickly users are able to

see what is likely the most meaningful content.

We say that a website has good LCP if at least 75 percent of all page views are faster than 2,500

ms. Of the three CWV metrics, LCP pass rates are the lowest, often making it the bottleneck to

achieving good CWV assessments.

This year, 51% of websites have good LCP experiences on mobile and 63% on desktop. LCP

appears to be one of the major reasons why websites’ mobile experiences have gotten so much

better in 2022, having a 6 percentage point improvement this year.

Why did LCP improve so much this year? To help answer that, let’s explore a couple of loading

performance diagnostic metrics: TTFB and FCP.

Time to First Byte (TTFB)

Time to First Byte428 (TTFB) is the time from the start of the navigation to the first byte of data

returned to the client. It’s our first step in the web performance checklist, representing the

backend component of LCP performance, particularly network connection speeds and server

response times.

Figure 12.3. The percent of websites having good LCP, segmented by device and year.

428. https://web.dev/ttfb/

Part II Chapter 12 : Performance

2022 Web Almanac by HTTP Archive 381

https://almanac.httparchive.org/static/images/2022/performance/good-lcp-by-device.png
https://almanac.httparchive.org/static/images/2022/performance/good-lcp-by-device.png
https://web.dev/ttfb/

As an aside, note that earlier this year Chrome changed429 the threshold for “good” TTFB from

500 ms to 800 ms. In the chart above, all historical data is using this new threshold for

comparison purposes.

With that in mind, the percentage of websites having good TTFB has not actually improved very

much. In the past year, websites’ desktop and mobile experiences have gotten one percentage

point better, which is nice but doesn’t account for the gains observed to LCP. While this doesn’t

rule out improvements to the “needs improvement” and “poor” ends of the TTFB distribution,

the “good” end is what matters most.

Another complication is that TTFB is still considered to be an experimental430 metric in CrUX.

According to the CrUX documentation, TTFB does not factor in more advanced navigation types

like pre-rendered and back/forward navigations. This is somewhat of a blind spot, so if there

were improvements in these areas, they wouldn’t necessarily affect the TTFB results.

First Contentful Paint (FCP)

First Contentful Paint431 (FCP) is the time from the start of the request to the first meaningful

content painted to the screen. In addition to TTFB, this metric can be affected by render-

blocking content. The threshold for “good” FCP is 1,800 ms.

Figure 12.4. The percent of websites having good TTFB, segmented by device and year.

429. https://developer.chrome.com/docs/crux/release-notes/#202204
430. https://developer.chrome.com/docs/crux/methodology/#experimental-metrics
431. https://web.dev/fcp/

Part II Chapter 12 : Performance

382 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/performance/good-ttfb-by-device.png
https://almanac.httparchive.org/static/images/2022/performance/good-ttfb-by-device.png
https://developer.chrome.com/docs/crux/release-notes/#202204
https://developer.chrome.com/docs/crux/methodology/#experimental-metrics
https://web.dev/fcp/

FCP improved dramatically this year, with 49% of websites having good mobile experiences and

64% for desktop. This represents an 11 and 4 percentage point increase for mobile and

desktop, respectively.

In the absence of TTFB data to the contrary, this indicates that there were major improvements

to frontend optimizations, like eliminating render-blocking resources or better resource

prioritization. However, as we’ll see in the following sections, it seems like there may have been

something else entirely to thank for the LCP improvements this year.

LCP metadata and best practices

These performance improvements may not actually be due to changes to the websites

themselves. Changes to network infrastructure, operating systems, or browsers could also

impact LCP performance at web-scale like this, so let’s dig into some heuristics.

Render-blocking resources

A page is considered to have render-blocking resources if resources hold up the initial paint (or

render) of the page. This is particularly likely for critical scripts and styles that are loaded over

the network. Lighthouse includes an audit432 that checks for these resources, which we’ve run on

Figure 12.5. The percent of websites having good FCP, segmented by device and year.

432. https://web.dev/render-blocking-resources/

Part II Chapter 12 : Performance

2022 Web Almanac by HTTP Archive 383

https://almanac.httparchive.org/static/images/2022/performance/good-fcp-by-device.png
https://almanac.httparchive.org/static/images/2022/performance/good-fcp-by-device.png
https://web.dev/render-blocking-resources/

the home page of each website in CrUX. You can learn more about how we test these pages in

our Methodology.

Surprisingly, there was no dramatic improvement in the percent of pages that have render-

blocking resources. Only 20% of mobile pages pass the audit, which is a mere 1 percentage

point increase over last year.

2022 is the first year in which we have Lighthouse data for desktop. So while we’re unable to

compare it against previous years, it’s still interesting to see that many fewer desktop pages

pass the audit relative to mobile, in spite of the trend of desktop pages tending to have better

LCP and FCP performance.

LCP content types

The LCP element can be a number of different types of content, like an image, a heading, or a

paragraph of text.

Figure 12.6. The percent of pages that pass the render-blocking Lighthouse audit , segmented by
device and year.

Part II Chapter 12 : Performance

384 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/performance/pages-passing-render-blocking-resources-audit.png
https://almanac.httparchive.org/static/images/2022/performance/pages-passing-render-blocking-resources-audit.png

It’s clear that images are the most common type of LCP content, with the img element

representing the LCP on 42% of mobile pages. Mobile pages are slightly more likely to have

heading and paragraph elements be the LCP than desktop pages, while desktop pages are more

likely to have image elements as the LCP. One possible explanation is the way that mobile

layouts—especially in portrait orientation—make images that are not responsive appear

smaller, giving way to large blocks of text like headings and paragraphs to become the LCP

elements.

The second most popular LCP element type is div . This is a generic HTML container that

Figure 12.7. The percent of pages that have a given element as its LCP.

Part II Chapter 12 : Performance

2022 Web Almanac by HTTP Archive 385

https://almanac.httparchive.org/static/images/2022/performance/top-lcp-element-types.png
https://almanac.httparchive.org/static/images/2022/performance/top-lcp-element-types.png

could be used for text or styling background images. To help disambiguate how often these

elements contain images or text, we can evaluate the url property of the LCP API433.

According to the specification434, when this property is set, the LCP content must be an image.

We see that 72% of mobile pages and 82% of desktop pages have images as their LCP. For

example, these images may be traditional img elements or CSS background images. This

suggests that the vast majority of the div elements seen in the previous figure are images as

well. 26% of mobile pages and 17% of desktop pages have text-based content as their LCP.

1% of pages actually use inline images as their LCP content. This is almost always a bad idea for

a number of reasons, mostly around caching and complexity.

LCP prioritization

After the HTML document is loaded, there are two major factors that affect how quickly the

LCP resource itself can be loaded: discoverability and prioritization. We’ll explore LCP

discoverability later, but first let’s look at how LCP images are prioritized.

Images are not loaded at high priority by default, but thanks to the new Priority Hints435 API,

developers can explicitly set their LCP images to load at high priority to take precedence over

Figure 12.8. The percent of pages that use each type of LCP content.

433. https://developer.mozilla.org/docs/Web/API/LargestContentfulPaint
434. https://www.w3.org/TR/largest-contentful-paint/#dom-largestcontentfulpaint-url
435. https://web.dev/priority-hints/

Part II Chapter 12 : Performance

386 2022 Web Almanac by HTTP Archive

https://developer.mozilla.org/docs/Web/API/LargestContentfulPaint
https://www.w3.org/TR/largest-contentful-paint/#dom-largestcontentfulpaint-url
https://almanac.httparchive.org/static/images/2022/performance/top-lcp-content-types.png
https://almanac.httparchive.org/static/images/2022/performance/top-lcp-content-types.png
https://web.dev/priority-hints/

non-essential resources.

0.03% of pages use fetchpriority=high on their LCP elements. Counterproductively, a

handful of pages actually lower the priority over their LCP images: 77 pages on mobile and 104

on desktop.

fetchpriority is still very new and not supported everywhere, but there’s little to no reason

why it shouldn’t be in every developer’s toolbox. Patrick Meenan436, who helped develop the API,

describes it437 as a “cheat code” given how easy it is to implement relative to the potential

improvements.

LCP static discoverability

Ensuring an LCP image is discovered early is key to the browser loading it as soon as possible.

Even the prioritization improvements that we discussed above, cannot help if the browser does

not know it needs to load the resource until later.

An LCP image is considered to be statically discoverable if its source URL can be parsed directly

from the markup sent by the server. This definition includes sources defined within picture
or img elements as well as sources that are explicitly preloaded.

One caveat is that text-based LCP content is always statically discoverable based on this

definition. However, text-based content may sometimes depend on client-side rendering or

web fonts, so consider these results as lower bounds.

Custom lazy-loading techniques like the example above are one way that images are prevented

from being statically discoverable, since they rely on JavaScript to update the src attribute.

Client-side rendering may also obscure the LCP content.

Figure 12.9. The percent of pages that use fetchpriority=high on their LCP element.

0.03%

436. https://twitter.com/patmeenan
437. https://twitter.com/patmeenan/status/1460276602479251457

Part II Chapter 12 : Performance

2022 Web Almanac by HTTP Archive 387

https://twitter.com/patmeenan
https://twitter.com/patmeenan/status/1460276602479251457

39% of mobile pages have LCP elements that are not statically discoverable. This figure is even

worse on desktop at 44% of pages, potentially as a consequence of the previous section’s

finding that LCP content is more likely to be an image on desktop pages.

This is the first year that we’re looking at this metric, so we don’t have historical data for

comparison, but these results hint at a big opportunity to improve the load delay of LCP

resources.

LCP preloading

When the LCP image is not statically discoverable, preloading438 can be an effective way to

minimize the load delay. Of course, it would be better if the resource was statically discoverable

to begin with, but addressing that may require a complex rearchitecture of the way the page

loads. Preloading is somewhat of a quick fix by comparison, as it can be implemented with a

single HTTP header or meta tag.

Only about 1 in 200 mobile pages preload their LCP images. This figure falls to about 1 in 400

(0.25%) when we only consider pages whose LCP images are not statically discoverable.

Preloading statically discoverable images might be considered overkill, as the browser should

already know about the image thanks to its preload scanner439. However, it can help load critical

images earlier above other statically discoverable images that may be earlier in the HTML—for

example header images or mega menu images. This is especially true for browsers that do not

support fetchpriority .

These results show that the overwhelming majority of the web could benefit from making their

LCP images more discoverable. Loading LCP images sooner, either by making them statically

Figure 12.10. The percent of mobile pages on which the LCP element was not statically
discoverable.

39%

Figure 12.11. The percent of mobile pages that preload their LCP images.

0.56%

438. https://web.dev/preload-critical-assets/
439. https://web.dev/preload-scanner/

Part II Chapter 12 : Performance

388 2022 Web Almanac by HTTP Archive

https://web.dev/preload-critical-assets/
https://web.dev/preload-scanner/
https://caniuse.com/?search=fetchpriority
https://caniuse.com/?search=fetchpriority
https://caniuse.com/?search=fetchpriority

discoverable or preloading them, can go a long way to improving LCP performance. But as with

all things related to performance, always experiment to understand what’s best for your

specific site.

LCP initiator

When an LCP resource is not statically discoverable, there must be some other, more

convoluted process by which it gets discovered.

27% of mobile pages have LCP images that are discovered in the HTML after the preload

scanner has already run, typically due to script-based lazy-loading or client-side rendering.

8% of mobile pages depend on an external stylesheet for their LCP resource, for example using

the background-image property. This adds a link in the resource’s critical request chain and

may further complicate LCP performance if the stylesheet is loaded cross-origin.

4% of mobile pages have an undiscoverable LCP initiator whose type we’re unable to detect.

These may be a combination of HTML and CSS initiators.

Both script- and style-based discoverability issues are bad for performance, but their effects

can be mitigated with preloading.

Figure 12.12. The percent of pages whose LCP is not statically discoverable and initiated from a
given resource.

Part II Chapter 12 : Performance

2022 Web Almanac by HTTP Archive 389

https://almanac.httparchive.org/static/images/2022/performance/top-lcp-initiators-among-pages-whose-lcp-is-not-statically-discoverable.png
https://almanac.httparchive.org/static/images/2022/performance/top-lcp-initiators-among-pages-whose-lcp-is-not-statically-discoverable.png

LCP lazy-loading

Lazy-loading is an effective performance technique to delay when non-critical resources start

loading, usually until they’re in or near the viewport. With precious bandwidth and rendering

power freed up, the browser can load critical content earlier in the page load. A problem arises

when lazy-loading is applied to the LCP image itself, because that prevents the browser from

loading it until much later.

Nearly 1 in 10 of pages with img -based LCP are using the native loading=lazy attribute.

Technically, these images are statically discoverable, but the browser will need to wait to start

loading them until it’s laid out the page to know whether they will be in the viewport. LCP

images are always in the viewport, by definition, so in reality none of these images should have

been lazy-loaded. For pages whose LCP varies by viewport size or initial scroll position from

deep-linked navigations, it’s worth testing whether eagerly loading the LCP candidate results in

better overall performance.

Note that the percentages in this section are out of only those pages in which the img element

is the LCP, not all pages. For reference, recall that this accounts for 42% of pages.

As we showed earlier, one way that sites might polyfill the native lazy-loading behavior is to

assign the image source to a data-src attribute and include an identifier like lazyload in

the class list. Then, a script will watch the positions of images with this class name relative to

the viewport, and swap the data-src value for the native src value to trigger the image to

start loading.

Nearly as many pages are using this kind of custom lazy-loading behavior as native lazy-loading,

at 8.8% of pages with img -based LCP.

Beyond the adverse performance effects of lazy-loading LCP images, native image lazy-loaded

Figure 12.13. The percent of mobile pages having image-based LCP that set loading=lazy on it.

9.8%

Figure 12.14. The percent of mobile pages having image-based LCP that use custom lazy-loading on
it.

8.8%

Part II Chapter 12 : Performance

390 2022 Web Almanac by HTTP Archive

is supported440 by all major browsers, so custom solutions may be adding unnecessary overhead.

In our opinion, while some custom solutions may provide more granular control over when

images load, developers should remove these extraneous polyfills and defer to the user agent’s

native lazy-loading heuristics.

Another benefit to using native lazy-loading is that browsers like Chrome are experimenting

with using heuristics to ignore the attribute on probable LCP candidates441. This is only possible

with native lazy-loading, so custom solutions would not benefit from any improvements in this

case.

Looking at pages that use either technique, 18% of pages with img -based LCP are

unnecessarily delaying the load of their most important images.

Lazy-loading is a good thing when used correctly, but these stats strongly suggest that there’s a

major opportunity to improve performance by removing this functionality from LCP images in

particular.

WordPress was one of the pioneers of native lazy-loading adoption, and between versions 5.5

and 5.9, it didn’t actually omit the attribute from LCP candidates. So let’s explore the extent to

which WordPress is still contributing to this anti-pattern.

According to the CMS chapter, WordPress is used by 35% of pages. So it’s surprising to see that

72% of pages that use native lazy-loading on their LCP image are using WordPress, given that a

fix has been available since January 2022 in version 5.9. One theory that needs more

investigation is that plugins may be circumventing the safeguards built into WordPress core by

injecting LCP images onto the page with the lazy-loading behavior.

Figure 12.15. The percent of mobile pages having image-based LCP that use native or custom lazy-
loading on it.

18%

Figure 12.16. The percent of mobile pages using native lazy-loading on their LCP image that also use
WordPress.

72%

440. https://caniuse.com/loading-lazy-attr
441. https://bugs.chromium.org/p/chromium/issues/detail?id=996963

Part II Chapter 12 : Performance

2022 Web Almanac by HTTP Archive 391

https://caniuse.com/loading-lazy-attr
https://bugs.chromium.org/p/chromium/issues/detail?id=996963
https://bugs.chromium.org/p/chromium/issues/detail?id=996963

Similarly, a disproportionately high percentage of pages that use custom lazy-loading are built

with WordPress at 54%. This hints at a wider issue in the WordPress ecosystem about lazy-

loading overuse. Rather than being a fixable bug localized to WordPress core, there may be

hundreds or thousands of separate themes and plugins contributing to this anti-pattern.

LCP size

A major factor in the time it takes to load the LCP resource is its size over the wire. Larger

resources will naturally take longer to load. So for image-based LCP resources, how large are

they?

The median LCP image on mobile is 95 KB. To be honest, we expected much worse!

Desktop pages tend to have larger LCP images across the distribution, with a median size of

124 KB.

Figure 12.17. The percent of mobile pages using custom lazy-loading on their LCP image that also
use WordPress.

54%

Figure 12.18. Distribution of the size of image-based LCP resources.

Part II Chapter 12 : Performance

392 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/performance/lcp-image-size-distribution.png
https://almanac.httparchive.org/static/images/2022/performance/lcp-image-size-distribution.png

We also looked at the largest LCP image sizes and found a 68,607 KB image on desktop and

114,285 KB image on mobile. While it can be fun to look at how obscenely large these outliers

are, let’s keep in mind the unfortunate reality that these are active websites visited by real

users. Data isn’t always free, and performance problems like these start to become accessibility

problems for users on metered mobile data plans. These are also sustainability problems

considering how much energy is wasted loading blatantly oversized images like these.

Looking at it a different way, the figure above shows the distribution as a histogram in 100 KB

increments. This view makes it clearer to see how LCP image sizes fall predominantly in the

sub-200 KB range. We also see that 5% of LCP images on mobile are greater than 1,000 KB in

size.

How large an LCP image should optimally be depends on many factors. But the fact that 1 in 20

websites are serving megabyte-sized images to our 360px-wide mobile viewports clearly

highlights the need for site owners to embrace responsive images442. For more analysis on this

Figure 12.19. The size of the largest LCP image.

114,285 KB

Figure 12.20. Histogram of image-based LCP sizes.

442. https://developer.mozilla.org/docs/Learn/HTML/Multimedia_and_embedding/Responsive_images

Part II Chapter 12 : Performance

2022 Web Almanac by HTTP Archive 393

https://almanac.httparchive.org/static/images/2022/performance/lcp-image-size-histogram.png
https://almanac.httparchive.org/static/images/2022/performance/lcp-image-size-histogram.png
https://developer.mozilla.org/docs/Learn/HTML/Multimedia_and_embedding/Responsive_images

topic, refer to the Media and Mobile Web chapters.

LCP format

Choice of LCP image format can have significant effects on its byte size and ultimately its

loading performance. WebP and AVIF are two relatively newer formats that are found to be

more efficient than traditional formats like JPG (or JPEG) and PNG.

According to the Media chapter, the JPG format makes up about 40% of all images loaded on

mobile pages. However, JPG makes up 67% of all LCP images on mobile, which is 2.5x more

common than PNG at 26%. These results may hint at a tendency for pages to use photographic-

quality images as their LCP resource rather than digital artwork, as photographs tend to

compress better as JPG compared to PNG, but this is just speculation.

4% of pages with image-based LCP use WebP. This is good news for image efficiency, however

less than 1% are using AVIF. While AVIF may compress even better than WebP, it’s not

supported in all modern browsers, which explains its low adoption. On the other hand, WebP is

supported in all modern browsers, so its low adoption represents a major opportunity to

optimize LCP images and their performance.

Figure 12.21. The percent of pages that use a given format for their LCP images.

Part II Chapter 12 : Performance

394 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/performance/lcp-image-formats.png
https://almanac.httparchive.org/static/images/2022/performance/lcp-image-formats.png

LCP image optimization

The previous section looked at the popularity of various image formats used by LCP resources.

Another way that developers can make their LCP resources smaller and load more quickly is to

utilize efficient compression settings. The JPG format can be lossily compressed to eke out

unnecessary bytes without losing too much image quality. However, some JPG images may not

be compressed enough.

Lighthouse includes an audit443 that will measure the byte savings from setting JPGs to

compression level 85. If the image is more than 4 KB smaller as a result, the audit fails and it’s

considered an opportunity for optimization.

Of the pages whose LCP images are JPG-based and flagged by Lighthouse, 68% of them do not

have opportunities to improve the LCP image via lossy compression alone. These results are

somewhat surprising and suggest that the majority of “hero” JPG images use appropriate

quality settings. That said, 20% of these pages could save as much as 100 KB and 4% can save

500 KB or more. Recall that the majority of LCP images are under 200 KB, so this is some

serious savings!

Figure 12.22. Histogram of byte savings for JPG-based LCP images.

443. https://web.dev/uses-optimized-images/

Part II Chapter 12 : Performance

2022 Web Almanac by HTTP Archive 395

https://web.dev/uses-optimized-images/
https://almanac.httparchive.org/static/images/2022/performance/lcp-image-optimization.png
https://almanac.httparchive.org/static/images/2022/performance/lcp-image-optimization.png

LCP host

In addition to the size and efficiency of the LCP image itself, the server from which it loads can

also have an impact on its performance. Loading LCP images from the same origin as the HTML

document tends to be faster because the open connection can be reused.

However, LCP images may be loaded from other origins, like asset domains and image CDNs.

When this happens, setting up the additional connection can take valuable time away from the

LCP allowance.

One in five mobile pages cross-host their LCP images. The time to set up the connection to

these third-party hosts could add unnecessary delays to the LCP time. It’s best practice to self-

host LCP images on the same origin as the document, whenever possible. Resource hints444 could

be used to preconnect to the LCP origin—or better yet, preload the image itself—but these

techniques are not very widely adopted.

LCP conclusions

LCP performance has improved significantly this year, especially for mobile users. While we

don’t have a definitive answer for why that happened, the data presented above does give us a

few clues.

Figure 12.23. Cross-hosted LCP images

444. https://almanac.httparchive.org/en/2021/resource-hints

Part II Chapter 12 : Performance

396 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/performance/cross-hosted-lcp-images.png
https://almanac.httparchive.org/static/images/2022/performance/cross-hosted-lcp-images.png
https://almanac.httparchive.org/en/2021/resource-hints

What we’ve seen so far is that render-blocking resources are still quite prevalent, very few sites

are using advanced prioritization techniques, and more than a third of LCP images are not

statically discoverable. Without concrete data to suggest that site owners or large publishing

platforms are concertedly optimizing these aspects of their LCP performance, other places to

look are optimizations at the OS or browser level.

According to a Chromium blog post445 in March 2022, loading performance on Android

improved by 15%. The post doesn’t go into too much detail, but it credits the improvement to

“prioritizing critical navigation moments on the browser user interface thread.” This may help explain

why mobile performance outpaced desktop performance in 2022.

The six percentage point improvement to LCP this year can only happen when hundreds of

thousands of websites’ performance improves. Putting aside the tantalizing question of how

that happened, let’s take a moment to appreciate that user experiences on the web are getting

better. It’s hard work, but improvements like these make the ecosystem healthier and are worth

celebrating.

Cumulative Layout Shift (CLS)

Cumulative Layout Shift446 (CLS) is a layout stability metric that represents the amount that

content unexpectedly moves around on the screen. We say that a website has good CLS if at

least 75% of all navigations across the site have a score of 0.1 or less.

445. https://blog.chromium.org/2022/03/a-new-speed-milestone-for-
chrome.html#:~:text=Chrome%20continues%20to%20get%20faster%20on%20Android%20as%20well.%20Loading%20a%20page%20now%20takes%2015%25%20less%20time%2C%20thanks%20to%20prioritizing%20critical%20navigation%20moments%20on%20the%20br

446. https://web.dev/cls/

Part II Chapter 12 : Performance

2022 Web Almanac by HTTP Archive 397

https://blog.chromium.org/2022/03/a-new-speed-milestone-for-chrome.html#:~:text=Chrome%20continues%20to%20get%20faster%20on%20Android%20as%20well.%20Loading%20a%20page%20now%20takes%2015%25%20less%20time%2C%20thanks%20to%20prioritizing%20critical%20navigation%20moments%20on%20the%20browser%20user%20interface%20thread
https://web.dev/cls/

This year, the percentage of websites with “good” CLS improved significantly on mobile devices,

going from 62% to 74%. CLS on desktop improved by 3 percentage points to 65%.

While LCP is the bottleneck for most sites to be assessed as having good CWV overall, there’s

no doubt that the major improvements to mobile CLS this year have had a positive effect on the

CWV pass rates.

What happened to improve mobile CLS by such a significant margin? One likely explanation is

Chrome’s new and improved back/forward cache447 (bfcache), which was released in version 96

in mid-November 2021. This change enabled eligible pages to be pristinely restored from

memory during back and forward navigations, rather than having to “start over” by fetching

resources from the HTTP cache—or worse, over the network—and reconstructing the page.

Figure 12.24. Good CLS by device

447. https://web.dev/bfcache/

Part II Chapter 12 : Performance

398 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/performance/good-cls-by-device.png
https://almanac.httparchive.org/static/images/2022/performance/good-cls-by-device.png
https://web.dev/bfcache/

This chart shows LCP and CLS performance over time at monthly granularity. Over a two month

period starting in January 2022, after Chrome released the bfcache update, the percent of

websites having good CLS started to climb much more quickly than before.

But how did bfcache improve CLS so much? Due to the way Chrome instantly restores the page

from memory, its layout is settled and unaffected by any of the initial instability that typically

occurs during loading.

One theory why LCP experiences didn’t improve as dramatically is that back/forward

navigations were already pretty fast thanks to standard HTTP caching. Remember, the

threshold for “good” LCP is 2.5 seconds, which is pretty generous assuming any critical

resources would already be in cache, and there are no bonus points for making “good”

experiences even faster.

CLS metadata and best practices

Let’s explore how much of the web is adhering to CLS best practices.

Explicit dimensions

The most straightforward way to avoid layout shifts is to reserve space for content by setting

dimensions, for example using height and width attributes on images.

Figure 12.25. Monthly timeseries of the percent of websites having good mobile LCP and CLS.

Part II Chapter 12 : Performance

2022 Web Almanac by HTTP Archive 399

https://almanac.httparchive.org/static/images/2022/performance/monthly-cls-lcp.png
https://almanac.httparchive.org/static/images/2022/performance/monthly-cls-lcp.png

72% of mobile pages have unsized images. This stat alone doesn’t give the full picture, because

unsized images don’t always result in user-perceived layout shifts, for example if they load

outside of the viewport. Still, it’s a sign that site owners may not be closely adhering to CLS best

practices.

The median web page has 2 unsized images and 10% of mobile pages have at least 26 unsized

images.

Having any unsized images on the page can be a liability for CLS, but perhaps a more important

factor is the size of the image. Large images contribute to bigger layout shifts, which make CLS

worse.

Figure 12.26. The percent of mobile pages that fail to set explicit dimensions on at least one image.

72%

Figure 12.27. Distribution of the number of unsized images per page.

Part II Chapter 12 : Performance

400 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/performance/unsized-images.png
https://almanac.httparchive.org/static/images/2022/performance/unsized-images.png

The median unsized image on mobile has a height of 99px. Given that our test devices have a

mobile viewport height of 512px, that’s about 20% of the viewport area that would shift down,

assuming full-width content. Depending on where that image is in the viewport when it loads, it

could cause a layout shift score448 of at most 0.2, which more than exceeds the 0.1 threshold for

“good” CLS.

Desktop pages tend to have larger unsized images. The median unsized image on desktop is

113px tall and the 90th percentile has a height of 410px.

In what we can only hope is either a measurement error or a seriously mistaken web developer,

the largest unsized image that we found is an incredible 4 quintillion pixels tall. That image is so

big it could stretch from the Earth to the moon… three million times. Even if that is some kind of

one-off mistake, the next biggest unsized image is still 33,554,432 pixels tall. Either way, that’s a

big layout shift.

Figure 12.28. Distribution of the heights of unsized images.

Figure 12.29. The height of the largest unsized image.

4,048,234,137,947,990,000px

448. https://web.dev/cls/#layout-shift-score

Part II Chapter 12 : Performance

2022 Web Almanac by HTTP Archive 401

https://almanac.httparchive.org/static/images/2022/performance/unsized-image-height.png
https://almanac.httparchive.org/static/images/2022/performance/unsized-image-height.png
https://web.dev/cls/#layout-shift-score

Animations

Some non-composited449 CSS animations can affect the layout of the page and contribute to CLS.

The best practice450 is to use transform animations instead.

38% of mobile pages use these layout-altering CSS animations and risk making their CLS worse.

Similar to the unused images issue, what matters most for CLS is the degree to which the

animations affect the layout relative to the viewport.

The distribution above shows that most pages don’t use these types of animations, and the ones

that do only use it sparingly. At the 75th percentile, pages use them twice.

Figure 12.30. The percent of mobile pages that have non-composited animations.

38%

Figure 12.31. Distribution of the number of non-composited animations per page.

449. https://web.dev/non-composited-animations/
450. https://web.dev/optimize-cls/#animations-%F0%9F%8F%83%E2%80%8D%E2%99%80%EF%B8%8F

Part II Chapter 12 : Performance

402 2022 Web Almanac by HTTP Archive

https://web.dev/non-composited-animations/
https://web.dev/optimize-cls/#animations-%F0%9F%8F%83%E2%80%8D%E2%99%80%EF%B8%8F
https://almanac.httparchive.org/static/images/2022/performance/animations.png
https://almanac.httparchive.org/static/images/2022/performance/animations.png

Fonts

In the page load process, it can take some time for the browser to discover, request, download,

and apply a web font. While this is all happening, it’s possible that text has already been

rendered on a page. If the web font isn’t yet available, the browser can default to rendering text

in a system font. Layout shifts happen when the web font becomes available and existing text,

rendered in a system font, switches to the web font. The amount of layout shift caused depends

on how different the fonts are from each other.

82% of pages use web fonts, so this section is highly relevant to most site owners.

One way to avoid font-induced layout shifts is to use font-display: optional , which will

never swap in a web font after the system text has already been shown. However, as noted by

the Fonts chapter, less than 1% of pages are taking advantage of this directive.

Even though optional is good for CLS, there are UX tradeoffs. Site owners might be willing to

have some layout instability or a noticeable flash of unstyled text (FOUT) if it means that their

Figure 12.32. The percent of mobile pages that use web fonts.

82%

Figure 12.33. Adoption of font-display values.

Part II Chapter 12 : Performance

2022 Web Almanac by HTTP Archive 403

https://almanac.httparchive.org/static/images/2022/performance/font-display-usage.png
https://almanac.httparchive.org/static/images/2022/performance/font-display-usage.png
https://developer.mozilla.org/docs/Web/CSS/@font-face/font-display
https://developer.mozilla.org/docs/Web/CSS/@font-face/font-display

preferred font can be displayed to users.

Rather than hiding the web fonts, another strategy to mitigate CLS is to load them as quickly as

possible. Doing so would, if all goes well, display the web font before the system text is

rendered.

According to the Fonts chapter, 20% of mobile pages are preloading their web fonts. One

challenge with preloading the font is that the exact URL may not be known upfront, for example

if using a service like Google Fonts. Preconnecting to the font host is the next best option for

performance, but only 16% of pages are using that, which is half as many pages that use the

less-performant option to prefetch the DNS.

bfcache eligibility

We’ve shown how impactful bfcache can be for CLS, so it’s worth considering eligibility as a

somewhat indirect best practice.

The best way to tell if a given page is eligible for bfcache is to test it in DevTools451.

Unfortunately, there are over 100 eligibility criteria452, many of which are hard or impossible to

measure in the lab. So rather than looking at bfcache eligibility as a whole, let’s look at a few

criteria that are more easily measurable to get a sense for the lower bound of eligibility.

Figure 12.34. Adoption of resource hints for font resources.

451. https://web.dev/bfcache/#test-to-ensure-your-pages-are-cacheable
452. https://docs.google.com/spreadsheets/d/1li0po_ETJAIybpaSX5rW_lUN62upQhY0tH4pR5UPt60/edit?usp=sharing

Part II Chapter 12 : Performance

404 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/performance/fonts-resource-hints.png
https://almanac.httparchive.org/static/images/2022/performance/fonts-resource-hints.png
https://web.dev/bfcache/#test-to-ensure-your-pages-are-cacheable
https://docs.google.com/spreadsheets/d/1li0po_ETJAIybpaSX5rW_lUN62upQhY0tH4pR5UPt60/edit?usp=sharing

The unload event is a discouraged way to do work when the page is in the process of going

away (unloading). Besides there being better ways453 to do that, it’s also one way to make your

page ineligible for bfcache.

17% of all mobile pages set this event handler, however the situation worsens the more popular

the website is. In the top 1k, 36% of mobile pages are ineligible for bfcache for this reason.

Figure 12.35. Usage of unload by site rank.

453. https://web.dev/bfcache/#never-use-the-unload-event

Part II Chapter 12 : Performance

2022 Web Almanac by HTTP Archive 405

https://almanac.httparchive.org/static/images/2022/performance/bfcache-unload.png
https://almanac.httparchive.org/static/images/2022/performance/bfcache-unload.png
https://developer.mozilla.org/docs/Web/API/Window/unload_event
https://developer.mozilla.org/docs/Web/API/Window/unload_event
https://web.dev/bfcache/#never-use-the-unload-event

The Cache-Control: no-store header tells user agents never to cache a given resource.

When set on the main HTML document, this makes the entire page ineligible for bfcache.

22% of all mobile pages set this header, and 28% of mobile pages in the top 1k. This and the

unload criteria are not mutually exclusive, so combined we can only say that at least 22% of

mobile pages are ineligible for bfcache.

To reiterate, it’s not that these things cause CLS issues. However, fixing them may make pages

eligible for bfcache, which we’ve been shown to be an indirect yet powerful tool for improving

layout stability.

CLS conclusions

CLS is the CWV metric that improved the most in 2022 and it appears to have had a significant

impact on the number of websites that have “good” overall CWV.

The cause of this improvement seems to come down to Chrome’s launch of bfcache, which is

reflected in the January 2022 CrUX dataset. However, at least a fifth of sites are ineligible for

this feature due to aggressive no-store caching policies or discouraged use of the unload
event listener. Correcting these anti-patterns is CLS’s “one weird trick” to improve

performance.

There are other, more direct ways site owners can improve their CLS. Setting height and

Figure 12.36. Usage of Cache-Control: no-store by site rank.

Part II Chapter 12 : Performance

406 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/performance/bfcache-nostore.png
https://almanac.httparchive.org/static/images/2022/performance/bfcache-nostore.png
https://developer.mozilla.org/docs/Web/HTTP/Headers/Cache-Control#no-store
https://developer.mozilla.org/docs/Web/HTTP/Headers/Cache-Control#no-store

width attributes on images is the most straightforward one. Optimizing how animations are

styled and how fonts load are two other—admittedly more complex—approaches to consider.

First Input Delay (FID)

First Input Delay454 (FID) measures the time from the first user interaction like a click or tap to

the time at which the browser begins processing the corresponding event handlers. A website

has “good” FID if at least 75 percent of all navigations across the site are faster than 100 ms.

Effectively all websites have “good” FID for desktop users, and this trend has held firm over the

years. Mobile FID performance is also exceptionally fast, with 92% of websites having “good”

FID, a slight improvement over last year.

While it’s great that so many websites have good FID experiences, developers need to be

careful not to become too complacent. Google has been experimenting with a new

responsiveness metric455 that could end up replacing FID, which is especially important because

sites tend to perform much worse on this new metric than FID.

Figure 12.37. Good FID by device

454. https://web.dev/fid/
455. https://web.dev/better-responsiveness-metric/

Part II Chapter 12 : Performance

2022 Web Almanac by HTTP Archive 407

https://web.dev/fid/
https://almanac.httparchive.org/static/images/2022/performance/good-fid-by-device.png
https://almanac.httparchive.org/static/images/2022/performance/good-fid-by-device.png
https://web.dev/better-responsiveness-metric/
https://web.dev/better-responsiveness-metric/

FID metadata and best practices

Let’s dig deeper into the ways that responsiveness can be improved across the web.

Disabling double-tap to zoom

Some mobile browsers, including Chrome, wait at least 250 ms before handling tap inputs to

make sure users aren’t attempting to double-tap to zoom456. Given that the threshold for “good”

FID is 100 ms, this behavior makes it impossible to pass the assessment.

<meta name="viewport" content="width=device-width, initial-

scale=1">

There’s an easy fix, though. Including a meta viewport tag in the document head like the one

above will prompt the browser to render the page as wide at the device width, which makes

text content more legible and eliminates the need for double-tap to zoom.

This is one of the quickest, easiest, and least intrusive ways to meaningfully improve

responsiveness and all mobile pages should be setting it.

7.3% of mobile pages fail to set the meta viewport directive. Recall that about 8% of mobile

websites fail to meet the threshold for “good” FID. This is a significant proportion of the web

that is needlessly slowing down their sites’ responsiveness. Correcting this may very well mean

the difference between failing and passing the FID assessment.

Total Blocking Time (TBT)

Total Blocking Time457 (TBT) is the time between the First Contentful Paint458 (FCP) and Time to

Interactive459 (TTI), representing the total amount of time that the main thread was blocked and

unable to respond to user inputs.

Figure 12.38. The percent of mobile pages that do not set a viewport meta tag.

7.3%

456. https://developer.chrome.com/blog/300ms-tap-delay-gone-away/
457. https://web.dev/tbt/
458. https://web.dev/fcp/
459. https://web.dev/tti/

Part II Chapter 12 : Performance

408 2022 Web Almanac by HTTP Archive

https://developer.chrome.com/blog/300ms-tap-delay-gone-away/
https://web.dev/tbt/
https://web.dev/fcp/
https://web.dev/tti/
https://web.dev/tti/

TBT is often used as a lab-based proxy for FID, due to the challenges of realistically simulating

user interactions in synthetic tests.

Note that these results are sourced from the lab-based TBT performance of pages in the HTTP

Archive dataset. This is an important distinction because for the most part we’ve been looking

at real-user performance data from the CrUX dataset.

With that in mind, we see that mobile pages have significantly worse TBT than desktop pages.

This isn’t surprising given that our Lighthouse mobile environment is intentionally configured to

run with a throttled CPU in a way that emulates a low-end mobile device. Nevertheless, the

results show that the median mobile page has a TBT of 1.7 seconds, meaning that if this were a

real-user experience, no taps within 1.7 seconds of FCP would be responsive. At the 90th

percentile, a user would have to wait 6.3 seconds before the page became responsive.

Despite the fact that these results come from synthetic testing, they’re based on the actual

JavaScript served by real websites. If a real user on similar hardware tried to access one of

these sites, their TBT might not be too different. That said, the key difference between TBT and

FID is that the latter relies on the user actually interacting with the page, which they can do at

any time before, during, or after the TBT window, all leading to vastly different FID values.

Figure 12.39. Distribution of lab-based TBT per page.

Part II Chapter 12 : Performance

2022 Web Almanac by HTTP Archive 409

https://almanac.httparchive.org/static/images/2022/performance/tbt.png
https://almanac.httparchive.org/static/images/2022/performance/tbt.png

Long tasks

Long tasks460 are periods of script-induced CPU activity at least 50 ms long that prevent the

main thread from responding to input. Any long task is liable to cause responsiveness issues if a

user attempts to interact with the page at that time.

Note that, like the TBT analysis above, this section draws from lab-based data. As a result, we’re

only able to measure long tasks during the page load observation window, which starts when

the page is requested and ends after 60 seconds or 3 seconds of network inactivity, whichever

comes first. A real user may experience long tasks throughout the entire lifetime of the page.

The median mobile web page has 3.3 seconds-worth of long tasks, compared to only 0.4

seconds for desktop pages. Again, this shows the outsized effects of CPU speed on

responsiveness heuristics. At the 90th percentile, mobile pages have at least 8.0 seconds of

long tasks.

It’s also worth noting that these results are significantly higher than the distribution of TBT

times. Remember that TBT is bounded by FCP and TTI and FID is dependent on both how busy

the CPU is and when the user attempts to interact with the page. These post-TTI long tasks can

also create frustrating responsiveness experiences, but unless they occur during the first

interaction, they wouldn’t be represented by FID. This is one reason why we need a field metric

that more comprehensively represents users’ experiences throughout the entire page lifetime.

Figure 12.40. Distribution of lab-based long tasks per page.

460. https://web.dev/long-tasks-devtools/

Part II Chapter 12 : Performance

410 2022 Web Almanac by HTTP Archive

https://web.dev/long-tasks-devtools/
https://almanac.httparchive.org/static/images/2022/performance/long-tasks.png
https://almanac.httparchive.org/static/images/2022/performance/long-tasks.png

Interaction to Next Paint (INP)

Interaction to Next Paint461 (INP) measures the amount of time it takes for the browser to

complete the next paint in response to a user interaction. This metric was created after Google

requested feedback462 on a proposal to improve how we measure responsiveness. Many readers

may be hearing about this metric for the first time, so it’s worth going into a bit more detail

about how it works.

An interaction in this context refers to the user experience of providing an input to a web

application and waiting for the next frame of visual feedback to be painted on the screen. The

only inputs that are considered for INP are clicks, taps, and key presses. The INP value itself is

taken from one of the worst interaction latencies on the page. Refer to the INP

documentation463 for more info on how it’s calculated.

Unlike FID, INP is a measure of all interactions on the page, not just the first one. It also

measures the entire time until the next frame is painted, unlike FID which only measures the

time until the event handler starts processing. In these ways, INP is a much more

representative metric of the holistic user experience on the page.

A website has “good” INP if 75% of its INP experiences are faster than 200 ms. A website has

“poor” INP if the 75th percentile is greater than or equal to 500 ms. Otherwise, it’s INP is

assessed as “needs improvement”.

461. https://web.dev/inp/
462. https://web.dev/responsiveness/
463. https://web.dev/inp/#what-is-inp

Part II Chapter 12 : Performance

2022 Web Almanac by HTTP Archive 411

https://web.dev/inp/
https://web.dev/responsiveness/
https://web.dev/inp/#what-is-inp
https://web.dev/inp/#what-is-inp

55% of websites have “good” INP on mobile, 36% are rated “needs improvement”, and 8% have

“poor” INP. The desktop story of INP is more similar to FID in that 95% of websites are rated

“good”, 4% are rated “needs improvement”, and 1% are “poor”.

The enormous disparity between desktop and mobile users’ INP experiences is much wider

than with FID. This illustrates the extent to which mobile devices are struggling to keep up with

the overwhelming amount of work websites do, and all signs point to the increasing reliance on

JavaScript464 as a major factor.

INP by rank

To see how unevenly distributed INP performance is across the web, it’s useful to segment

websites by their popularity ranking.

Figure 12.41. Distribution of INP performance by device.

464. https://httparchive.org/reports/state-of-javascript?start=earliest&end=latest&view=grid#bytesJs

Part II Chapter 12 : Performance

412 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/performance/inp-device.png
https://almanac.httparchive.org/static/images/2022/performance/inp-device.png
https://httparchive.org/reports/state-of-javascript?start=earliest&end=latest&view=grid#bytesJs

27% of the top 1k most popular websites have good mobile INP. As the site popularity

decreases, the percent having good mobile INP does something funny; it worsens at bit at the

top 10k rank to 25%, then it improves to 31% at the top 100k, 41% at the top million, and it

ultimately lands at 55% for all websites. Except for the top 1k, it seems that INP performance is

inversely proportional to site popularity.

Figure 12.42. Mobile INP performance by rank.

Part II Chapter 12 : Performance

2022 Web Almanac by HTTP Archive 413

https://almanac.httparchive.org/static/images/2022/performance/inp-mobile-performance-by-rank.png
https://almanac.httparchive.org/static/images/2022/performance/inp-mobile-performance-by-rank.png

When we look at the amount of JavaScript that the median mobile page loads for each of these

ranks, it follows the same funny pattern! The median mobile page in the top 1k loads 604 KB of

JavaScript, then it increases to 680 KB for the top 10k before dropping all the way down to 462

KB over all websites. These results don’t prove that loading—and using—more JavaScript

necessarily causes poor INP, but it definitely suggests a correlation exists.

INP as a hypothetical CWV metric

INP is not an official CWV metric, but Annie Sullivan465, who is the Tech Lead for the CWV

program at Google, has commented466 about its intended future, saying “INP is still experimental!

Not a Core Web Vital yet, but we hope it can replace FID.”

This raises an interesting question: hypothetically, if INP were to be a CWV metric today, how

different would the pass rates be?

Figure 12.43. Median amount of JavaScript loaded per page, by rank.

465. https://twitter.com/anniesullie
466. https://twitter.com/anniesullie/status/1535208365374185474

Part II Chapter 12 : Performance

414 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/performance/js-bytes-rank.png
https://almanac.httparchive.org/static/images/2022/performance/js-bytes-rank.png
https://twitter.com/anniesullie
https://twitter.com/anniesullie/status/1535208365374185474

For desktop experiences, the situation wouldn’t change much. 43% of websites would have

good CWV with INP, compared to 44% with FID.

However, the disparity is much more dramatic among websites’ mobile experiences, which

would fall to 31% having good CWV with INP, from 40% with FID.

Figure 12.44. Comparison of the percent of websites having good CWV with FID and INP, by device.

Part II Chapter 12 : Performance

2022 Web Almanac by HTTP Archive 415

https://almanac.httparchive.org/static/images/2022/performance/cwv-fid-inp-device.png
https://almanac.httparchive.org/static/images/2022/performance/cwv-fid-inp-device.png

The situation gets even starker when we look at mobile experiences by site rank. Rather than

52% of the top 1k websites having good CWV with FID, only 20% of them would have good

CWV with INP, a decrease of 32 percentage points. So even though the most popular websites

overperform with FID compared to all websites (52% versus 40%), they actually underperform

with INP (20% versus 31%).

The story is similar for the top 10k websites, which would decrease by 24 percentage points

with INP as a CWV. Websites in this rank would have the lowest rate of good CWV with INP. As

we saw in the previous section, this is also the rank with the highest usage of JavaScript. The

rate of good CWV converges with FID and INP as the ranks become less popular, with the

difference falling to 18, 13, and 9 percentage points respectively.

These results show that the most popular websites have the most work to do to get their INP

into shape.

Figure 12.45. Comparison of the percent of mobile websites having good mobile CWV with FID and
INP, by rank.

Part II Chapter 12 : Performance

416 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/performance/cwv-fid-inp-rank.png
https://almanac.httparchive.org/static/images/2022/performance/cwv-fid-inp-rank.png

In this chart we’re looking at the percent of a given technology’s websites that would no longer

be considered as having “good” CWV should FID be replaced with INP.

Two things jump out in this chart: 1C-Bitrix and Pixnet, which are CMSs and would have an

enormous proportion of their websites ceasing to pass the CWV assessment with INP. Pixnet

stands to lose 86% of its websites, down from 98% to 13%! The passing rate for 1C-Bitrix would

fall from 79% to 40%, a difference of 39%.

11% of websites using the React framework would no longer pass CWV. Wix, which is now the

second most popular CMS, uses React. 15% of its websites would not have “good” CWV.

Proportionally though, there would still be more Wix websites passing CWV than React

websites overall, at 24% and 19% respectively, but INP would narrow that gap.

Figure 12.46. Percent change of websites having good CWV from FID to INP, by technology.

Part II Chapter 12 : Performance

2022 Web Almanac by HTTP Archive 417

https://almanac.httparchive.org/static/images/2022/performance/cwv-inp-tech.png
https://almanac.httparchive.org/static/images/2022/performance/cwv-inp-tech.png

WordPress is the most popular technology in the list and 6% of its 2.3 million websites would

no longer have “good” CWV. Its passing rate would fall from 30% to 24%.

Squarespace would have the least amount of movement due to this hypothetical change, only

losing 1% of its websites’ “good” CWV. This suggests that Squarespace websites not only have a

fast first interaction but also consistently fast interactions throughout the page experience.

Indeed, the CWV Technology Report467 shows Squarespace significantly outperforming other

CMSs at INP, having over 80% of their websites passing the INP threshold.

INP and TBT

What actually makes INP a better responsiveness metric than FID? One way to answer that

question is to look at the correlation between field-based INP and FID performance and lab-

based TBT performance. TBT is a direct measure of how unresponsive a page can be, but it can

never be a CWV itself because it doesn’t actually measure the user-perceived experience468.

This section draws from Annie Sullivan’s research469 using the May 2022 dataset.

This chart shows the relationship between pages’ FID and TBT responsiveness. The solid

horizontal line at 100 ms represents the threshold for “good” FID, and most pages fall

comfortably under this threshold.

The most notable attribute of this chart is the dense area in the bottom left corner, which

Figure 12.47. Scatterplot visualizing the correlation between FID and TBT. (Source470)

467. https://datastudio.google.com/s/sM9D7EUjxU8
468. https://web.dev/user-centric-performance-metrics/
469. https://colab.sandbox.google.com/drive/12lJmAABgyVjaUbmWvrbzj9BkkTxw6ay2
470. https://colab.sandbox.google.com/drive/12lJmAABgyVjaUbmWvrbzj9BkkTxw6ay2

Part II Chapter 12 : Performance

418 2022 Web Almanac by HTTP Archive

https://datastudio.google.com/s/sM9D7EUjxU8
https://web.dev/user-centric-performance-metrics/
https://colab.sandbox.google.com/drive/12lJmAABgyVjaUbmWvrbzj9BkkTxw6ay2
https://almanac.httparchive.org/static/images/2022/performance/tbt-fid.png
https://almanac.httparchive.org/static/images/2022/performance/tbt-fid.png
https://colab.sandbox.google.com/drive/12lJmAABgyVjaUbmWvrbzj9BkkTxw6ay2

appears to be smeared out across the TBT axis. The length of this smear represents pages

having high TBT and low FID, which illustrates the low degree of correlation between FID and

TBT.

There’s also a patch of pages that have low TBT and a FID of about 250 ms. This area represents

pages that have tap delay471 issues due to missing a <meta name=viewport> tag. These are

outliers that can be safely ignored for this analysis’s purposes.

The Kendall472 and Spearman473 coefficients of correlation for this distribution are 0.29 and 0.40,

respectively.

This is the same chart, but with INP instead of FID. The solid horizontal line here represents the

200 ms threshold for “good” INP. Compared to FID, there are many more pages above this line

and not assessed as “good”.

Pages in this chart are more densely packed in the bottom left corner, which signifies the higher

degree of correlation between FID and TBT. There’s still a smear, but it’s not as pronounced.

The Kendall and Spearman coefficients of correlation for this distribution are 0.34 and 0.45,

respectively.

Figure 12.48. Scatterplot visualizing the correlation between INP and TBT. (Source474)

471. https://developer.chrome.com/blog/300ms-tap-delay-gone-away/
472. https://en.wikipedia.org/wiki/Kendall_rank_correlation_coefficient
473. https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient
474. https://colab.sandbox.google.com/drive/12lJmAABgyVjaUbmWvrbzj9BkkTxw6ay2

Part II Chapter 12 : Performance

2022 Web Almanac by HTTP Archive 419

https://developer.chrome.com/blog/300ms-tap-delay-gone-away/
https://en.wikipedia.org/wiki/Kendall_rank_correlation_coefficient
https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient
https://almanac.httparchive.org/static/images/2022/performance/tbt-inp.png
https://almanac.httparchive.org/static/images/2022/performance/tbt-inp.png
https://colab.sandbox.google.com/drive/12lJmAABgyVjaUbmWvrbzj9BkkTxw6ay2

As Annie notes, both metrics are correlated with TBT, but she concludes that INP is more

strongly correlated, making it a better responsiveness metric.

FID conclusions

These results show that sites absolutely do have responsiveness issues, despite the rosy picture

painted by FID. Regardless of whether INP becomes a CWV metric, your users will thank you if

you start optimizing it now.

Nearly one in ten mobile sites are leaving free performance on the table by failing to disable

double-tap to zoom. This is something all sites should be doing; it’s only one line of HTML and it

benefits both FID and INP. Run Lighthouse on your page and look for the viewport476 audit to be

sure.

By taking a hypothetical look at INP as a CWV, we can see just how much work there is to be

done just to get back to FID-like levels. The most popular mobile websites would be especially

affected by such a change as a consequence of their (over)use of JavaScript. Some CMSs and

JavaScript frameworks would be hit harder than others, and it’ll take an ecosystem-wide effort

to collectively rein in the amount of client-side work that they do.

Conclusion

As the industry continues to learn more about CWV, we’re seeing steady improvement both in

terms of implementation and across all top-level metric values themselves. The most visible

performance optimization strides are at the platform level, like Android and bfcache

improvements, given that their impact can be felt across many sites at once. But let’s look at the

most elusive piece of the performance puzzle: individual site owners.

—Annie Sullivan on Twitter475

First, is INP correlated with TBT? Is it more correlated with TBT than FID?

Yes and yes!

But they are both correlated with TBT; is INP catching more problems with

main thread blocking JavaScript? We can break down the percent of sites

meeting the “good” threshold: yes it is! "

475. https://twitter.com/anniesullie/status/1525161893450727425
476. https://web.dev/viewport/

Part II Chapter 12 : Performance

420 2022 Web Almanac by HTTP Archive

https://twitter.com/anniesullie/status/1525161893450727425
https://web.dev/viewport/

Google’s decision to make CWV part of search ranking catapulted performance to the top of

many companies’ roadmaps, especially in the SEO industry. Individual site owners are certainly

working hard to improve their performance and played a major role in the CWV improvements

over the last year, even if those individual efforts are much harder to spot at this scale.

That said, there’s still more work to be done. Our research shows opportunities to improve LCP

resources’ prioritization and static discoverability. Many sites are still failing to disable double-

tap to zoom to avoid artificial interactivity delays. New research into INP has uncovered

responsiveness problems that were easy to overlook with FID. Regardless of whether INP

becomes a CWV, we should always strive to deliver fast and responsive experiences, and the

data shows that we can be doing better.

At the end of the day, there will always be more work to do, which is why the most impactful

thing we can do is to continue making web performance more approachable. In the years to

come, let’s emphasize getting web performance knowledge the “last mile” to site owners.

Authors

Melissa Ada

@mel_melificent mel-ada mel-ada

Mel Ada is a software engineer on the Web Performance team at Etsy. Her current

involvement in the community includes co-organizing the NY Web Performance

Meetup and speaking about recent works.

Rick Viscomi

@rick_viscomi rviscomi https://rviscomi.dev/

Rick Viscomi is a DevRel engineer at Google, focusing on web performance. He is

the co-author of Using WebPageTest477, a book about web performance testing. He

also co-maintains HTTP Archive and is the Editor-in-Chief of the Web Almanac.

477. https://usingwpt.com/

Part II Chapter 12 : Performance

2022 Web Almanac by HTTP Archive 421

https://twitter.com/mel_melificent
https://github.com/mel-ada
https://www.linkedin.com/in/mel-ada/
https://twitter.com/rick_viscomi
https://github.com/rviscomi
https://rviscomi.dev/
https://usingwpt.com/

422 2022 Web Almanac by HTTP Archive

Part II Chapter 13

Privacy

Written by Tom Van Goethem and Nurullah Demir
Reviewed by Iskander Sanchez-Rola
Analyzed by Max Ostapenko and Yana Dimova
Edited by Abel Mathew

Introduction

Whether it is to keep up-to-date with the latest news, stay in touch with friends via online social

media, or look for a nice dress or sweater to buy, many of us rely on the web to provide us with

these services and information with just a couple of clicks. A side-effect of spending almost 7

hours per day on the internet on average478, is that a lot of our browsing activities, and thus

indirectly our personal interests and data, is captured or shared with a plethora of online web

services and companies.

As advertisers try to provide users with ads that are most relevant to them (as these are the

ones they are most likely to interact with), they often resort to third-party tracking to infer the

user’s interest. In essence, a user’s online activities are tracked step by step, providing trackers,

in particular those that are most prevalent on the web, with a heap of information, most of

which is probably not even relevant to infer the user’s interests. On top of that, users are

478. https://datareportal.com/reports/digital-2022-global-overview-report

Part II Chapter 13 : Privacy

2022 Web Almanac by HTTP Archive 423

https://datareportal.com/reports/digital-2022-global-overview-report
https://datareportal.com/reports/digital-2022-global-overview-report

generally not given an adequate choice to opt-out of this.

In this chapter, we explore the current state of the web in terms of privacy. We report on the

ubiquitousness of third-party tracking, the different services that make up this ecosystem, and

how certain parties are trying to circumvent the protective measures that users are employing

to protect their privacy (for example, blocklist-based anti-trackers). Furthermore, we also look

into how websites are trying to enhance the privacy of their visitors, either by adopting

features that limit the information shared with other parties, or by being compliant with

privacy regulations such as GDPR479 and CCPA480.

Online tracking

Tracking is one of the most pervasive web technologies on the web—we find that 82% of

desktop websites (80% for mobile) include at least one third-party tracker. By following users’

behavior online, these tracking companies can create profiles of them, which can be used for

personalized advertising, give insights to website owners on who visits their websites, or use

this information to distinguish legitimate users from (unwanted) bots. In this section, we

explore the different techniques that are used to track the activities of users online and look at

how trackers aim to circumvent the various privacy features that aim to protect users from

being tracked.

Third-party tracking

One of the most common forms of online tracking is through third-party services, where a

website owner typically includes a third-party, cross-site, script that provides site analytics or

shows advertisements to visitors. This script can then set a third-party cookie, and log which

website the user visited. Whenever the user visits another website that includes the same

third-party service, the cookie will be sent along to the tracker, allowing them to re-identify the

user and link both website visits to the same profile.

The types of third-party services that are included—and by doing so are implicitly given the

capabilities of tracking website visitors—somewhat vary. The two most common categories (as

Figure 13.1. The percentage of websites that include at least one third-party tracker on desktop.

82%

479. https://gdpr.eu/
480. https://oag.ca.gov/privacy/ccpa

Part II Chapter 13 : Privacy

424 2022 Web Almanac by HTTP Archive

https://gdpr.eu/
https://oag.ca.gov/privacy/ccpa
https://whotracks.me/blog/tracker_categories.html

defined by WhoTracks.me481) of such trackers are site analytics scripts (68% on mobile, 73% on

desktop) and advertising (66% on mobile, 68% on desktop). These two are followed by a few

other categories, some of which might not have a clear link to tracking: customer interaction

(services that allow customers to easily send messages to the website owner), audio/video

players (for example, YouTube embedded videos), and social (for example, Facebook “like”

buttons).

For a tracker to successfully profile a user, they need to be included in a large fraction of

websites in order to be able to track a significant fraction of users’ online activities. When we

look at the most common trackers, these are mostly the “usual suspects”. Of the top 10 most

common trackers five are affiliated with Google. Also included in this list are popular social

networks such as Facebook and Twitter.

Figure 13.2. Most common trackers.

481. https://whotracks.me/blog/tracker_categories.html

Part II Chapter 13 : Privacy

2022 Web Almanac by HTTP Archive 425

https://whotracks.me/blog/tracker_categories.html
https://almanac.httparchive.org/static/images/2022/privacy/most-common-trackers.png
https://almanac.httparchive.org/static/images/2022/privacy/most-common-trackers.png

Websites might want to make use of multiple third-party services, and thus may include

multiple trackers in their website (be sure to check out the Third Parties chapter for a deep dive

into which third parties are included on the web!). We find that approximately 15% of desktop

sites and 16% of mobile sites include “just” one tracker. Unfortunately, this means that it is in

fact more common for websites to include multiple trackers. We even found one website that

included 126 different trackers!

Figure 13.3. Number of trackers per website.

Part II Chapter 13 : Privacy

426 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/privacy/number-of-trackers-per-site.png
https://almanac.httparchive.org/static/images/2022/privacy/number-of-trackers-per-site.png

(Re)targeting

When browsing the web, we often encounter advertisements for products that we recently

looked up. The reason for that is ad retargeting. When a website detects that a user might be

interested in a specific product, they report this to the tracker and/or advertiser, who will later

on, when the user is visiting other, unrelated websites, show advertisements for the product

that the user is supposedly interested in, in an attempt to nudge them into purchasing it.

The tracker offering most of the purely retargeting services is Criteo, with a prevalence of

1.98% on desktop and 2.04% on mobile. It is followed by Yahoo Advertising and AdRoll, which

collectively make up less than half of Criteo’s market share. The most widely used retargeting

service of last year482, Google Tag Manager, does not show in these results as it is now classified

under the “tag managers” Wappalyzer category. Although this service is used for retargeting, it

does so indirectly, by the inclusion of retargeting tags which are detected separately.

Figure 13.4. Most common retargeting services.

482. https://almanac.httparchive.org/en/2021/privacy

Part II Chapter 13 : Privacy

2022 Web Almanac by HTTP Archive 427

https://almanac.httparchive.org/static/images/2022/privacy/retargeting-services.png
https://almanac.httparchive.org/static/images/2022/privacy/retargeting-services.png
https://almanac.httparchive.org/en/2021/privacy

Third-party cookies

As mentioned before, the most established way to track users across different websites is by

means of third-party cookies. With recent changes in browser policies, cookies will no longer be

included in cross-site requests by default. In technical terms this means that most browsers set

the SameSite attribute of cookies to the default value Lax . Websites can override this by

explicitly setting the value themselves. This has been happening on a large scale: of the third-

party cookies that set the SameSite cookies, 98% of them set it to the value None , allowing

them to be included in cross-site requests. Furthermore, the expiration time of the cookie also

determines how long it remains valid; we find that the median lifetime of a cookie is 365 days.

For a deeper dive into cookies and cookie attributes, please refer to the Security chapter.

For a large part, the third-party trackers that set cookies largely coincide with the third parties

that are included on websites. However, the most popular third-party tracker, Google Analytics,

is not as prevalent here. This can be attributed to the fact that Google Analytics sets a first-

party cookie (_ga), which according to their definition483 “is unique to the specific property, so

it cannot be used to track a given user or browser across unrelated websites”. Nevertheless, the

most common tracking domain that sets third-party cookies, doubleclick.net , is still

Google affiliated. The other domains on the list are associated with social media and

Figure 13.5. Top 10 origins of cookies set by trackers.

483. https://policies.google.com/technologies/cookies?hl=en-US

Part II Chapter 13 : Privacy

428 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/privacy/cookie-origins.png
https://almanac.httparchive.org/static/images/2022/privacy/cookie-origins.png
https://policies.google.com/technologies/cookies?hl=en-US

advertising.

When looking at the most common third-party cookies, we again see several tracking domains,

lead by the test_cookie from doubleclick.net —a cookie with a lifespan of 15 minutes

that is used for functionality purposes according to its description484. This cookie is followed by

the fr cookie set by facebook.com —a cookie “used to deliver, measure and improve the

relevancy of ads, with a lifespan of 90 days” according to its definition485. The rest of the 10 most

prevalent third-party cookies are set by YouTube and Yandex.

Figure 13.6. Top 10 cookies set by trackers.

484. https://business.safety.google/adscookies/
485. https://www.facebook.com/policy/cookies/

Part II Chapter 13 : Privacy

2022 Web Almanac by HTTP Archive 429

https://almanac.httparchive.org/static/images/2022/privacy/most-common-cookies.png
https://almanac.httparchive.org/static/images/2022/privacy/most-common-cookies.png
https://business.safety.google/adscookies/
https://www.facebook.com/policy/cookies/

Evasion technique: fingerprinting

As more and more browsers develop countermeasures for cookie-based tracking, and giving

users more control to block third-party cookies, some trackers aim to circumvent these

protections. One such technique is fingerprinting, where browser-specific features (for

example, installed browser extensions), OS-specific features (for example, installed fonts) and

hardware-specific features (for example, differences in rendering complex composition based

on which GPU is used) are used to create a unique fingerprint of the user. This fingerprint then

allows the tracker to re-identify the same user across different, unrelated websites.

In our analysis, we looked for five different, known fingerprinting libraries and we find that the

most prevalent library used on the web to perform fingerprinting is FingerprintJS486, which we

find on 0.62% of all websites. Most likely this is because the library is open source, and has a

free version. Compared to our measurements last year487, we find that the use of fingerprinting

has approximately stayed the same.

Evasion technique: CNAME tracking

As most of the tracking countermeasures focus on blocking or disabling third-party cookies,

another way to circumvent these protections is to use first-party cookies instead. Here, the

Figure 13.7. Fingerprinting services usage.

486. https://github.com/fingerprintjs/fingerprintjs
487. https://almanac.httparchive.org/en/2021/privacy

Part II Chapter 13 : Privacy

430 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/privacy/fingerprinting-services.png
https://almanac.httparchive.org/static/images/2022/privacy/fingerprinting-services.png
https://github.com/fingerprintjs/fingerprintjs
https://almanac.httparchive.org/en/2021/privacy

tracker is cloaked using a CNAME record on a subdomain of the website it is embedded in.

When the tracker then sets a cookie, it will be considered a first-party cookie. A limitation of

CNAME-based tracking is that it can only be used to track a user’s activities within a specific

website, although the tracker could still rely on cookie syncing488 to match visits across multiple

sites together.

By analyzing the various CNAME trackers, we find that the market share is mainly

concentrated around two main services: Adobe Experience Cloud (0.65% on desktop and

0.38% on mobile) and Pardot (0.25% on desktop and 0.44% on mobile). Interestingly, the

adoption of CNAME tracking is significantly higher on websites visited with a desktop browser

compared to those visited on mobile. Presumably this is because there are fewer privacy-

preserving mechanisms on mobile browsers—for example, most of the popular browsers on

mobile do not support extensions.

Figure 13.8. Top 5 CNAME tracking services.

488. https://adtechexplained.com/cookie-syncing-explained/

Part II Chapter 13 : Privacy

2022 Web Almanac by HTTP Archive 431

https://adtechexplained.com/cookie-syncing-explained/
https://almanac.httparchive.org/static/images/2022/privacy/cname-tracking-services.png
https://almanac.httparchive.org/static/images/2022/privacy/cname-tracking-services.png

Although the overall prevalence of CNAME-based tracking might not seem very high (0.9% on

desktop websites, 0.5% on mobile sites), its adoption is mainly concentrated on highly popular

websites. Within the top 1,000 most visited websites 6.2% of desktop sites and 5.8% of mobile

sites embed a CNAME tracker. This means that users are quite likely to encounter such trackers

when browsing the web.

Access to (sensitive) data from the browser

Browsers have an abundant number of APIs, which provide developers with useful mechanisms

to interact with different components in whichever way they want. Several of these APIs can

also be used to extract information from sensors or other peripherals connected to the user’s

device. While most APIs provide a limited amount of information (such as the orientation of the

screen), others provide very detailed information (for example, the accelerometer and

gyroscope), which could be used for device fingerprinting, or even inferring which password a

user types based on the movements they make with their mobile device.

Figure 13.9. CNAME tracking usage per website rank group.

Part II Chapter 13 : Privacy

432 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/privacy/cname-tracking-by-rank.png
https://almanac.httparchive.org/static/images/2022/privacy/cname-tracking-by-rank.png

Sensor events

We find that the most prominent sensor event that websites listen for is the

deviceOrientation event, which fires when the device changes from portrait to landscape

mode or vice versa. It is used on 4.0% of desktop websites and 4.1% of mobile websites. The

usage is likely this high (relatively) because websites might want to update elements of the

layout when the orientation of the device changes.

Media devices

Using the MediaDevices API489, web developers can use the enumerateDevices() method to

get a list of all media devices connected to the user’s device. While this feature is useful to

determine whether a user has a camera or microphone connected to initiate a video call, it can

also be used to gather information about the system’s environment for fingerprinting purposes.

Figure 13.10. Top device sensor events used.

Figure 13.11. The percentage of desktop pages that enumerate media devices.

0.59%

489. https://developer.mozilla.org/docs/Web/API/MediaDevices

Part II Chapter 13 : Privacy

2022 Web Almanac by HTTP Archive 433

https://almanac.httparchive.org/static/images/2022/privacy/sensor-events.png
https://almanac.httparchive.org/static/images/2022/privacy/sensor-events.png
https://developer.mozilla.org/docs/Web/API/MediaDevices

We find that 0.59% of desktop websites and 0.48% of mobile sites try to access the list of

connected media devices—note that our crawler does not interact with the site, nor click on any

buttons. Interestingly, the usage of this API has significantly reduced since last year490, when the

prevalence of sites accessing the list of media devices was 12 times higher. Most likely this is

due to a popular library that no longer calls the API.

Geolocation

A lot of the content that is served to us is localized based on the location that we’re visiting

websites from. For web developers to determine where a visitor is from, they can use third-

party geolocation service. These will determine a user’s location based on their IP address.

Although this geolocation is typically used on the back-end, we do find some usage also in the

front-end: 0.115% of desktop sites and 0.083% of mobile sites contact ipify to determine the

user’s IP location.

Figure 13.12. Most common geolocation services.

Figure 13.13. The percentage of desktop pages that try to access the browser’s geolocation.

0.65%
490. https://almanac.httparchive.org/en/2021/privacy#media-devices

Part II Chapter 13 : Privacy

434 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/en/2021/privacy#media-devices
https://almanac.httparchive.org/static/images/2022/privacy/gelocation-services.png
https://almanac.httparchive.org/static/images/2022/privacy/gelocation-services.png

As the IP-based geolocation service can be quite inaccurate, especially when users rely on a

VPN to hide their original IP address, websites might request a more granular location through

the Geolocation API491. Of course, access to this (privacy-intrusive) API is still guarded by a

permission that users manually need to provide. Yet, we find that 0.65% of desktop sites and

0.61% of mobile sites try to access the user’s current location upon a visit to the home page,

without any user interaction. Interestingly, we still find 574 desktop sites—down from 900 last

year—that try to access the feature while the page was loaded over an insecure connection.

Due to the sensitive nature of the data that this feature provides, most browsers restrict its use

to secure origins.

Established controls to improve visitor’s privacy

As websites include a lot of content (scripts, plugins, etc.) from third parties that they might not

entirely trust, they might want to protect their users’ privacy from these third parties. Next, we

explore the various controls that can be used to restrict the features or data that third parties

have access to, or that make it explicitly clear which information a website wants to obtain from

a user.

Permissions Policy

Figure 13.14. Permissions Policy usage by API type.

491. https://developer.mozilla.org/docs/Web/API/Geolocation_API

Part II Chapter 13 : Privacy

2022 Web Almanac by HTTP Archive 435

https://developer.mozilla.org/docs/Web/API/Geolocation_API
https://almanac.httparchive.org/static/images/2022/privacy/permissions-policy-type.png
https://almanac.httparchive.org/static/images/2022/privacy/permissions-policy-type.png

By default, any third-party script can access the same browser features as the website they’re

embedded in. In order to limit the features that will be enabled for the website, the website can

make use of the Permissions Policy492. Through an HTTP response header the website can

indicate which features it wants to allow. For instance, if the microphone feature is not

included in this list, none of the scripts embedded in the web page can use it. Although the

policy is fairly new, we are seeing an adoption of 2.71% on desktop sites and 2.31% on mobile

sites.

The Permissions Policy supersedes the Feature Policy493, which can still be found on 0.69% of

desktop sites and 0.52% of mobile sites. By default most of the features regulated by the

Permissions Policy are disabled in cross-origin iframes, they can be explicitly enabled through

the allow attribute. We find that 15.18% of desktop sites and 14.32% of mobile sites make

use of this feature. For a more detailed analysis on the use of the allow attribute on iframes,

please refer to the Security chapter.

When we look at the directives that are used in the Permissions Policy, we see a similar usage

compared to last year494, with the exception of the one that’s most widely used in 2022, namely

Figure 13.15. Most common Permissions Policy feature names.

492. https://developer.chrome.com/en/docs/privacy-sandbox/permissions-policy/
493. https://developer.mozilla.org/docs/Web/HTTP/Headers/Feature-Policy
494. https://almanac.httparchive.org/en/2021/privacy

Part II Chapter 13 : Privacy

436 2022 Web Almanac by HTTP Archive

https://developer.chrome.com/en/docs/privacy-sandbox/permissions-policy/
https://developer.mozilla.org/docs/Web/HTTP/Headers/Feature-Policy
https://almanac.httparchive.org/static/images/2022/privacy/permission-policy-features.png
https://almanac.httparchive.org/static/images/2022/privacy/permission-policy-features.png
https://almanac.httparchive.org/en/2021/privacy

interest-cohort . This directive can be used to limit the access to the now-defunct FLoC

API. Presumably, this increase can be attributed to the various shortcomings of FLoC (increases

fingerprinting surface, reveals potentially sensitive information about users, etc.) where

website owners, providers and libraries took an active step in trying to protect the privacy of

their users.

Referrer Policy

By default, most user agents will include a Referer header. In short, this reveals to third

parties from which web site—or even page—a request was initiated. This is the case for any

resource that was embedded in the web page, as well as for the request that was initiated after

a user clicked on a link. Of course, this has the undesirable side-effect that these third parties

learn which website, or even which web page a specific user was visiting. By making use of the

Referrer Policy495, websites can limit the instances in which the Referrer header is included in

requests and thus improve user privacy. We find that 12% of the desktop sites and 10-% of the

mobile sites set such a document-wide policy, mostly via an HTTP response header.

Figure 13.16. The percentage of desktop sites that sets a document-wide Referrer Policy.

12%

495. https://developer.mozilla.org/docs/Web/HTTP/Headers/Referrer-Policy

Part II Chapter 13 : Privacy

2022 Web Almanac by HTTP Archive 437

https://developer.mozilla.org/docs/Web/HTTP/Headers/Referrer-Policy

We find that the most common usage of the Referrer Policy is to not include the Referer
header on downgrade requests, that is, HTTP requests initiated on an HTTPS-enabled page.

Unfortunately, this still leaks the page that the user is visiting in most scenarios—in HTTPS-

enabled requests. We do see that 2.7% of desktop sites and 2.1% of mobile sites aim to hide the

specific web page that a user is visiting through the strict-origin-when-cross-origin
policy, which is now most browsers default when a policy is not specified.

User-Agent Client Hints

In an effort to reduce the information that is revealed about the browser environment, and

more specifically the User-Agent string, the User-Agent Client Hints496 mechanism was

introduced. Through this feature, websites that want to access certain information about the

user’s browsing environment (browser version, operating system, etc.) now have to set a

header (Accept-CH) in the first response, upon which the browser will send the requested

data in subsequent requests. Among other benefits, this feature reduces the fingerprinting

surface and allows browsers to intervene in sending certain data, for example, via the Privacy

Figure 13.17. Most common Referrer Policies.

496. https://wicg.github.io/ua-client-hints/

Part II Chapter 13 : Privacy

438 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/privacy/referrer-policies.png
https://almanac.httparchive.org/static/images/2022/privacy/referrer-policies.png
https://wicg.github.io/ua-client-hints/
https://github.com/mikewest/privacy-budget

Budget497 proposal.

When we look at the adoption of sites that respond with the Accept-CH header in

comparison with the results from last year498 (top 1k: 3.56%, top 10k: 1.44%), we see a

significant increase in adoption, almost 3x for the most popular sites. Presumably, this increase

in adoption is related to the fact Chromium has been reducing the information that is shared in

the User-Agent string (through the User-Agent Reduction plan499).

We find that the sites that make use of User-Agent Client hints, generally request access to a

relatively large number of properties, limiting the benefit of what browsers aim to achieve

through efforts such as User-Agent Reduction. It will be interesting to see in the near future

how/whether browsers will limit the practices of acquiring a lot of information about the user’s

browsing environment.

New efforts to improve privacy by the browser

Over the last few years, the average web user has become increasingly conscious about their

online privacy. On the one hand, the many data breaches, which just seem to keep on happening

and getting bigger and bigger500, have left very few unaffected. On the other hand, the fact of the

Figure 13.18. Number of websites with Client Hints by rank group.

497. https://github.com/mikewest/privacy-budget
498. https://almanac.httparchive.org/en/2021/privacy
499. https://www.chromium.org/updates/ua-reduction/
500. https://www.informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks/

Part II Chapter 13 : Privacy

2022 Web Almanac by HTTP Archive 439

https://github.com/mikewest/privacy-budget
https://almanac.httparchive.org/static/images/2022/privacy/client-hints-by-rank.png
https://almanac.httparchive.org/static/images/2022/privacy/client-hints-by-rank.png
https://almanac.httparchive.org/en/2021/privacy
https://www.chromium.org/updates/ua-reduction/
https://www.informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks/
https://www.informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks/

ubiquitous tracking of users through third-party cookies is becoming increasingly well known

within the general population. As a result, more and more users are starting to expect their

browser to protect their privacy, and give them more control over the tracking of online

behaviors. Browser vendors, online publishers and ad-tech companies have heard this demand

for improved privacy, and have proposed the Privacy Sandbox—an initiative led by Google

Chrome.

Privacy Sandbox Origin Trial

At the time of publishing this year’s Web Almanac, Privacy Sandbox features are not yet

available for general use. Websites and web services—such as ads, which are typically shown in

iframes—can however participate in early testing of the Privacy Sandbox features, by making

use of the Origin Trial501. Note that this is only for users whose browser supports the

feature—Privacy Sandbox features are only implemented in Chrome, and are still disabled by

default at the time of this writing. This gives the web services access to three Privacy Sandbox-

related APIs: Topics502, FLEDGE503, and Attribution Reporting504.

The most prevalent services on the web that will test during the Origin Trial of Privacy Sandbox

Figure 13.19. Prevalence of origins requesting access to the Privacy Sandbox API Origin Trial.

Origin requesting feature Desktop Mobile

https://www.googletagmanager.com 12.53% 10.99%

https://googletagservices.com 11.05% 10.52%

https://doubleclick.net 11.04% 10.51%

https://googlesyndication.com 11.04% 10.51%

https://googleadservices.com 2.50% 2.29%

https://s.pinimg.com 1.49% 1.21%

https://criteo.net 0.64% 0.41%

https://criteo.com 0.59% 0.37%

https://imasdk.googleapis.com 0.10% 0.07%

https://teads.tv 0.04% 0.03%

501. https://developer.chrome.com/en/blog/privacy-sandbox-unified-origin-trial/
502. https://developer.chrome.com/docs/privacy-sandbox/topics/
503. https://developer.chrome.com/docs/privacy-sandbox/fledge/
504. https://developer.chrome.com/docs/privacy-sandbox/attribution-reporting/

Part II Chapter 13 : Privacy

440 2022 Web Almanac by HTTP Archive

https://developer.chrome.com/en/blog/privacy-sandbox-unified-origin-trial/
https://developer.chrome.com/docs/privacy-sandbox/topics/
https://developer.chrome.com/docs/privacy-sandbox/fledge/
https://developer.chrome.com/docs/privacy-sandbox/attribution-reporting/
https://www.googletagmanager.com/
https://googletagservices.com/
https://doubleclick.net/
https://googlesyndication.com/
https://googleadservices.com/
https://s.pinimg.com/
https://criteo.net/
https://criteo.com/
https://imasdk.googleapis.com/
https://teads.tv/

are: Google Tag Manager, Doubleclick, Google Syndication and Google Ad Services make up the

top five on both desktop and mobile sites. These are followed by the social media site Pinterest,

and other trackers and advertisers: Criteo, Google Ads SDK, and Teads.

Privacy Sandbox experiments

The Privacy Sandbox initiative consists of many different features that each touch upon

different aspects, and aim to still support the current common actions that users perform on

the web when third-party cookies are phased out. As most features are still under active

development, websites have not adopted them yet (with the exception of services opting-in to

the PrivacySandboxAdsAPIs Origin Trial).

For some time the Origin Trial for various Privacy Sandbox features was divided into separate

trials, one for each feature. Although these trials do not have any effect in modern browsing

environments, some web services did opt-in to them and forgot to remove the Origin-Trial
response header.

For example, we find that on 34,128 sites a web service opts-in to the

ConversionMeasurement Origin Trial, which at one point gave them access to the

Attribution Reporting API505 (previously called the Conversion Measurement API). This API is

used to track the conversion of a user clicking an ad to a purchase, for example.

For the TrustTokens506 Origin Trial, which has also expired, we are still seeing 6,005 sites where a

web service opts-in to it. This mechanism aims to allow websites to combat fraud by enabling

one browsing context (for example, site) to convey a limited amount of information to another.

Interestingly, on more than 30,000 websites a web service is still opting-in to the

InterestCohort origin trial, which would give them access to the interest group of the user

of FLoC. However, due to privacy concerns with the API, it was no longer pursued and

development was discontinued. It is superseded by the FLEDGE API507, which aims to provide

“on-device ad auctions to serve remarketing and custom audiences” and Topics API508, which

aims to allow advertisers to serve ads based on the interests of the user without the need of

cross-site tracking.

Compliance with privacy regulations

The data privacy regulatory space continues to expand as the newest frontier of legislation.

505. https://developer.chrome.com/en/docs/privacy-sandbox/attribution-reporting/
506. https://developer.chrome.com/en/docs/privacy-sandbox/trust-tokens/
507. https://developer.chrome.com/docs/privacy-sandbox/fledge/
508. https://developer.chrome.com/docs/privacy-sandbox/topics/

Part II Chapter 13 : Privacy

2022 Web Almanac by HTTP Archive 441

https://developer.chrome.com/en/docs/privacy-sandbox/attribution-reporting/
https://developer.chrome.com/en/docs/privacy-sandbox/trust-tokens/
https://developer.chrome.com/docs/privacy-sandbox/fledge/
https://developer.chrome.com/docs/privacy-sandbox/topics/

These regulations require organizations to be more transparent regarding their users’ data

processing to protect their data. Following the advent of key data privacy regulations like

General Data Protection Regulation (GDPR)509 and IAB Transparency and Consent Framework

(TCF) v2.0510, website providers took action to inform the users about processed data during the

visit and take consent from these users to process their data also for non-functional

purposes—for example, tracking and ads. This has led to us seeing cookie banners on websites

more often because website providers notify their users or ask for consent mainly through

(cookie) consent banners.

In most cases, users can interact with such consent banners and set which data should be

processed. However, managing such tasks is not easy on our modern, sophisticated web, which

is also getting more complicated. For this reason, website operators try to hand over this task to

third parties—so-called Consent Management Platform (CMP). CMPs ensure that the cookies

are used on the respective websites by the law. In the following, we discuss the use of CMPs

and notification of privacy policy.

Consent Management Platforms

As we have already discussed, using the consent management platform should ensure that the

website, in particular the behavior with cookies, should run in a legally compliant manner.

At this point, we would also like to note that the integration of CMP services does not always

ensure that the websites remain legally compliant, as the studies in this field show (for example,

Santos et al.511 and Fouad et al.512).

509. https://data.consilium.europa.eu/doc/document/ST-9565-2015-INIT/en/pdf
510. https://www.iabeurope.eu/
511. https://arxiv.org/abs/2104.06861
512. https://ieeexplore.ieee.org/document/9229842

Part II Chapter 13 : Privacy

442 2022 Web Almanac by HTTP Archive

https://data.consilium.europa.eu/doc/document/ST-9565-2015-INIT/en/pdf
https://www.iabeurope.eu/
https://www.iabeurope.eu/
https://arxiv.org/abs/2104.06861
https://ieeexplore.ieee.org/document/9229842

Our analysis shows that CMP usage has increased from 7% to 11% since last year. So we

recorded an increase of almost 60%. Also, this year we see that mobile is less involved than

desktop—although the difference is minimal. We also see that the providers CookieYes (18%),

OneTrust (64%), and Cookiebot (56%) have increased their market share since last year.

IAB consent frameworks

Compared to GDPR, the IAB Europe Transparency and Consent Framework (TCF)513 is an

industry-standard where global vendors514 are involved. The goal is to establish communication

between user consent and advertisers. TCF ensures that the websites in Europe are GDPR-

compliant. IAB Tech Lab US developed the U.S. Privacy Technical Specifications (USP)515 was

designed for the United States using the same concept of TCF.

Figure 13.20. Most common Consent Management Platform (CMP) services.

513. https://iabeurope.eu
514. https://iabeurope.eu/vendor-list/
515. https://iabtechlab.com/standards/ccpa/

Part II Chapter 13 : Privacy

2022 Web Almanac by HTTP Archive 443

https://almanac.httparchive.org/static/images/2022/privacy/cmp-services.png
https://almanac.httparchive.org/static/images/2022/privacy/cmp-services.png
https://iabeurope.eu/
https://iabeurope.eu/vendor-list/
https://iabtechlab.com/standards/ccpa/

We record that 4.6% of desktop websites use any IAB, with 3.5% using USP and 2.2% using IAB.

Thus, we have recorded an increase for both specifications since last year. We would like to

note here that our measurement is USA-based, so according to TCF, no consent banner is

required for non-EU visits. So this can be the reason why we identify more websites with USP.

Figure 13.21. Websites with IAB.

Part II Chapter 13 : Privacy

444 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/privacy/iab-prevalence.png
https://almanac.httparchive.org/static/images/2022/privacy/iab-prevalence.png

We see that Quantcast International Limited (0.37%), Google LLC (0.34%) and Didomi (0.31%)

are popular CMP providers for IAB TCF v2.

Figure 13.22. Top CMPs for IAB TCF v2.

Part II Chapter 13 : Privacy

2022 Web Almanac by HTTP Archive 445

https://almanac.httparchive.org/static/images/2022/privacy/iab-tcfv2-prevalence.png
https://almanac.httparchive.org/static/images/2022/privacy/iab-tcfv2-prevalence.png

Our analysis shows that the most common publishers we identified are from Germany, the US,

and the EU.

Privacy policy

Notifications regarding data processing do not always take place via a consent banner. They are

also usually described in more detail on separate pages compared to such banners. On such

pages, you will find information on integrated third parties, which data is processed for which

purpose, etc. To identify such sites, we used the privacy-relevant signatures from a study516.

Using this method, we could determine that 45% of desktop websites (41% on mobile)

contained a link on their homepage to a privacy-related page. The figure below shows the

distribution of the top privacy link keywords.

Figure 13.23. Most common publisher countries in IAB TCF v2.

516. https://github.com/RUB-SysSec/we-value-your-privacy/blob/master/privacy_wording.json

Part II Chapter 13 : Privacy

446 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/privacy/iab-publisher-countries.png
https://almanac.httparchive.org/static/images/2022/privacy/iab-publisher-countries.png
https://github.com/RUB-SysSec/we-value-your-privacy/blob/master/privacy_wording.json

We see that privacy (29%), policy (24%), and cookies (8%) are the top keywords for such links.

Conclusion

In this chapter, we explored many different aspects related to our online privacy on the web. It

is clear that in the past year a considerable amount of things have changed that affect our

privacy, and this progress can be expected to continue in the following years. In short, there are

some exciting times ahead of us. On the one hand, we found some unfortunate evolutions,

which hopefully one day we will be able to refer to as the web’s legacy. Third-party tracking,

mainly fueled by third-party cookies, is still ubiquitous with over 82% of websites containing at

least a single tracker. Furthermore, there still is a non-negligible number of websites or web

services that employ evasive techniques to circumvent anti-tracking measures.

On a more positive, privacy-preserving, track, we find that fewer sites are trying to access

potentially sensitive information from browser APIs. Hopefully, this remains the case with the

new APIs that are introduced in browsers on a regular basis.

Generally, it seems that websites are starting to hear the call of users to respect their

privacy—a call that is getting louder and louder. More and more sites are switching to

employing browser features that restrict the information that is sent to third parties.

Furthermore, mainly motivated by privacy regulations such as GDPR and CCPA, we are seeing

a clear increase —almost 60%—in the adoption of consent management platforms (CMPs),

Figure 13.24. Top privacy link keywords.

Part II Chapter 13 : Privacy

2022 Web Almanac by HTTP Archive 447

https://almanac.httparchive.org/static/images/2022/privacy/privacy-link-keywords.png
https://almanac.httparchive.org/static/images/2022/privacy/privacy-link-keywords.png

giving users more control over which information they want to share.

Finally, on the side of the browsers, we are also seeing a strong evolution towards providing

users with more control of their online privacy. Next to the features that several privacy-

focused browsers offer as a built-in solution, there is also the Privacy Sandbox initiative that

aims to continue providing the current functionalities on the web—such as targeted

advertising, anti-fraud, attribution of purchases, etc.—without the nefarious side-effects of

cross-site tracking. Although the development is still in fairly early stages, we see that web

services on a substantial number of websites are already opting-in to the Origin Trial. As such,

the features are extensively being tested, and are likely to become a persistent part of the web.

While it may still take a couple of years to finally get there, we are transitioning towards a web

that gives users more control over what they want to share with which parties. We can see this

convergence on both sides of the spectrum: on the one hand initiated by the website, and on

the other hand enforced by the browser. We can be hopeful that in the not-so-distant future

the data we share, is the data that we intend to share, and the journey on the web that we take

on a day-to-day basis no longer needs to be collected, shared, and analyzed by the numerous

trackers that we currently encounter—in the hope of respectfully tomorrow for all.

Authors

Tom Van Goethem

@tomvangoethem tomvangoethem https://tom.vg/

Tom Van Goethem recently joined the Chrome Privacy team at Google. Before,

Tom was in PhD program with the DistriNet group of the University of Leuven,

Belgium. His research interests cover a broad spectrum of topics in the field of

web security and privacy, with a primary focus on side-channel attacks. By

uncovering threats and proposing mitigations, Tom aims to make the web a nicer

place, a tiny bit at a time.

Nurullah Demir

@nrllah nrllh https://www.internet-sicherheit.de/team/demir-nurullah.html

Nurullah Demir is a cyber security researcher and PhD student at Institute for

Internet Security517 and Intelligent System Security, KASTEL Security Research

Labs518. His research focuses on web security & privacy, and web measurements.

517. https://www.internet-sicherheit.de/en/
518. https://intellisec.de

Part II Chapter 13 : Privacy

448 2022 Web Almanac by HTTP Archive

https://twitter.com/tomvangoethem
https://github.com/tomvangoethem
https://tom.vg/
https://twitter.com/nrllah
https://github.com/nrllh
https://www.internet-sicherheit.de/team/demir-nurullah.html
https://www.internet-sicherheit.de/en/
https://www.internet-sicherheit.de/en/
https://intellisec.de/
https://intellisec.de/

Part II Chapter 14

Security

Written by Saptak Sengupta, Liran Tal, and Brian Clark
Reviewed by Kushal Das and Barry Pollard
Analyzed by Victor Le Pochat, Vik Vanderlinden, and Gertjan Franken
Edited by Barry Pollard

Introduction

As people’s personal details continue to become more digital, security and privacy are

becoming extremely crucial across the internet. It’s the website owner’s responsibility that they

can secure the data they are taking from the user. Hence, it is essential for them to adopt all the

security best practices to ensure protection of the user against vulnerabilities that malwares

can exploit to get sensitive information.

Like previous years519, we have analyzed the adoption and usage of security methods and best

practices by the web community. We have analyzed metrics related to the bare essential

security measures that every website should adopt such as transport security and proper

cookie management. We have also discussed the data related to the adoption of different

security headers and how they help in content inclusion and preventing various malicious

attacks.

519. https://almanac.httparchive.org/en/2021/security

Part II Chapter 14 : Security

2022 Web Almanac by HTTP Archive 449

https://almanac.httparchive.org/en/2021/security

We looked at correlations for adoption of security measures with the location, technological

stack and website popularity. We hope that such correlations encourage all technological

stacks to aim for better security measures by default. We also discuss some well-known URIs

that help towards vulnerability disclosure and other security related settings based on Web

Application Security Working Group’s standards and drafts.

Transport security

Transport Layer Security ensures secure communication of data and resources between the

user and the websites. HTTPS520 uses TLS521 to encrypt all communication between the client and

the server.

94% of total requests in desktop and 93% of total requests in mobile are made over HTTPS. All

major browsers now have an HTTPS-only mode522 to show warning if a website uses HTTP

instead of HTTPS.

Figure 14.1. Requests that use HTTPS on desktop.

94%

520. https://developer.mozilla.org/docs/Glossary/https
521. https://www.cloudflare.com/en-gb/learning/ssl/transport-layer-security-tls/
522. https://support.mozilla.org/en-US/kb/https-only-prefs

Part II Chapter 14 : Security

450 2022 Web Almanac by HTTP Archive

https://developer.mozilla.org/docs/Glossary/https
https://www.cloudflare.com/en-gb/learning/ssl/transport-layer-security-tls/
https://support.mozilla.org/en-US/kb/https-only-prefs

The percentage of homepages that are served over HTTPS continues to be lower compared to

the total requests because a lot of the requests to a website are dominated by third-party

services like fonts, CDN, etc. which have a higher HTTPS adoption. We do see a slight increase

from last year in the percentage. 89.3% of homepages are now served over HTTPS on desktop

compared to 84.3% last year. Similarly, in our mobile dataset, 85.5% of homepages are served

over HTTPS compared to 81.2% last year.

Protocol versions

It’s important, not only to use HTTPS, but also to use an up-to-date TLS version. The TLS

working group523 has deprecated TLS v1.0 and v1.1 since they had multiple weaknesses. Since

the last year’s chapter, Firefox has now updated it’s UI524 and the option to enable TLS 1.0 and

1.1 has been removed from the error page in Firefox version 97. Chrome has also stopped

allowing bypassing525 the error page which is shown for TLS 1.0 and 1.1 since version 98.

TLS v1.3 is the latest and was released in August 2018 by IETF. It’s much faster and is more

secure526 than TLS v1.2. Many of the major vulnerabilities in TLS v1.2 had to do with older

cryptographic algorithms which TLS v1.3 removes.

Figure 14.2. HTTPS usage for sites.

523. https://datatracker.ietf.org/doc/rfc8996/
524. https://support.mozilla.org/en-US/kb/secure-connection-failed-firefox-did-not-connect#w_tls-version-unsupported
525. https://chromestatus.com/feature/5759116003770368
526. https://www.cloudflare.com/en-in/learning/ssl/why-use-tls-1.3/

Part II Chapter 14 : Security

2022 Web Almanac by HTTP Archive 451

https://almanac.httparchive.org/static/images/2022/security/https-usage-by-site.png
https://almanac.httparchive.org/static/images/2022/security/https-usage-by-site.png
https://datatracker.ietf.org/doc/rfc8996/
https://datatracker.ietf.org/doc/rfc8996/
https://support.mozilla.org/en-US/kb/secure-connection-failed-firefox-did-not-connect#w_tls-version-unsupported
https://chromestatus.com/feature/5759116003770368
https://chromestatus.com/feature/5759116003770368
https://www.cloudflare.com/en-in/learning/ssl/why-use-tls-1.3/
https://www.cloudflare.com/en-in/learning/ssl/why-use-tls-1.3/

In the above graph, we see that 70% of homepages in mobile and 67% of homepages in desktop

are served over TLSv1.3 which is approximately 7% more than last year. So, we are seeing some

constant shift from use of TLS v1.2 to TLS v1.3

Cipher suites

A cipher suite527 is a set of cryptographic algorithms that the client and server must agree on

before they can begin communicating securely using TLS.

Figure 14.3. TLS versions usage for sites.

527. https://learn.microsoft.com/en-au/windows/win32/secauthn/cipher-suites-in-schannel

Part II Chapter 14 : Security

452 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/security/tls-version-by-site.png
https://almanac.httparchive.org/static/images/2022/security/tls-version-by-site.png
https://learn.microsoft.com/en-au/windows/win32/secauthn/cipher-suites-in-schannel

Modern Galois/Counter Mode (GCM)528 cipher modes are considered to be much more secure

since they are not vulnerable to padding attacks529. TLS v1.3 only supports GCM and other

modern block cipher modes530 making it more secure. It also removes the trouble of cipher suite

ordering531. Another factor that determines the usage of a cipher suite is the key size for the

encryption and decryption. We still see 128-bit key size being widely used. Hence, we don’t see

much difference from last year’s graph with AES_128_GCM continuing to be the most used

cipher suite with 79% usage.

Figure 14.4. Distribution of cipher suites.

528. https://en.wikipedia.org/wiki/Galois/Counter_Mode
529. https://blog.qualys.com/product-tech/2019/04/22/zombie-poodle-and-goldendoodle-vulnerabilities
530. https://datatracker.ietf.org/doc/html/rfc8446#page-133
531. https://go.dev/blog/tls-cipher-suites

Part II Chapter 14 : Security

2022 Web Almanac by HTTP Archive 453

https://almanac.httparchive.org/static/images/2022/security/distribution-of-cipher-suites.png
https://almanac.httparchive.org/static/images/2022/security/distribution-of-cipher-suites.png
https://en.wikipedia.org/wiki/Galois/Counter_Mode
https://blog.qualys.com/product-tech/2019/04/22/zombie-poodle-and-goldendoodle-vulnerabilities
https://datatracker.ietf.org/doc/html/rfc8446#page-133
https://datatracker.ietf.org/doc/html/rfc8446#page-133
https://go.dev/blog/tls-cipher-suites
https://go.dev/blog/tls-cipher-suites

TLS v1.3 also makes forward secrecy532 compulsory. We see 97% of requests in both mobile and

desktop using forward secrecy.

Certificate Authority

A Certificate Authority533 or CA is a company or organization that issues the TLS certificate to

the websites that can be recognized by browsers and then establish a secure communication

channel with the website.

Figure 14.5. Forward secrecy usage.

532. https://en.wikipedia.org/wiki/Forward_secrecy
533. https://www.ssl.com/faqs/what-is-a-certificate-authority/

Part II Chapter 14 : Security

454 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/security/forward-secrecy-support.png
https://almanac.httparchive.org/static/images/2022/security/forward-secrecy-support.png
https://en.wikipedia.org/wiki/Forward_secrecy
https://www.ssl.com/faqs/what-is-a-certificate-authority/

Let’s Encrypt534 (or R3) continues to lead the charts with 48% of websites in desktop and 52% of

websites in mobile using certificates issued by them. Let’s Encrypt being a non-profit

organization has played an important role in the adoption of HTTPS and they continue to issue

an increasing number of certificates535. We would also like to take a moment to recognize one of

its founders, Peter Eckersly536, who unfortunately passed away recently.

Cloudflare537 continues to be in second position with its similarly free certificates for its

customers. Cloudflare CDNs increase the usage of Elliptic Curve Cryptography (ECC)538

certificates which are smaller and more efficient than RSA certificates but are often difficult to

deploy, due to the need to also continue to serve non-ECC certificates to older clients. We see

as Let’s Encrypt and Cloudflare’s percentage continues to increase, the percentage for usage of

other CAs are decreasing a little.

HTTP Strict Transport Security

HTTP Strict Transport Security (HSTS)539 is a response header that informs the browser to

automatically convert all attempts to access a site using HTTP to HTTPS requests instead.

Figure 14.6. Top 10 certificate issuers for websites.

Issuer Desktop Mobile

R3 48% 52%

Cloudflare Inc ECC CA-3 13% 12%

Sectigo RSA Domain Validation Secure Server CA 7% 8%

cPanel, Inc. Certification Authority 5% 5%

Amazon 3% 3%

Go Daddy Secure Certificate Authority - G2 3% 2%

DigiCert SHA2 Secure Server CA 2% 1%

RapidSSL TLS DV RSA Mixed SHA256 2020 CA-1 1% 1%

E1 1% 1%

534. https://letsencrypt.org/
535. https://letsencrypt.org/stats/#daily-issuance
536. https://community.letsencrypt.org/t/peter-eckersley-may-his-memory-be-a-blessing/183854
537. https://developers.cloudflare.com/ssl/ssl-tls/certificate-authorities/
538. https://www.digicert.com/faq/ecc.htm
539. https://developer.mozilla.org/docs/Web/HTTP/Headers/Strict-Transport-Security

Part II Chapter 14 : Security

2022 Web Almanac by HTTP Archive 455

https://letsencrypt.org/
https://letsencrypt.org/stats/#daily-issuance
https://community.letsencrypt.org/t/peter-eckersley-may-his-memory-be-a-blessing/183854
https://developers.cloudflare.com/ssl/ssl-tls/certificate-authorities/
https://www.digicert.com/faq/ecc.htm
https://developer.mozilla.org/docs/Web/HTTP/Headers/Strict-Transport-Security

25% of the mobile responses and 28% of desktop responses have an HSTS header.

HSTS is set using the Strict-Transport-Security header that can have three different

directives: max-age , includeSubDomains , and preload . max-age helps denote the

time, in seconds, that the browser should remember to access the site only using HTTPS. max-
age is a compulsory directive for the header.

We see 94% of sites in desktop and 95% of sites in mobile have a non-zero, non-empty max-
age .

34% of request responses for mobile, and 37% for desktop include includeSubdomain in the

HSTS settings. The number of responses with the preload directive, which is not part of the

HSTS specification540 is lower. It needs a minimum max-age of 31,536,000 seconds (or 1 year)

and also the includeSubdomain directive to be present.

Figure 14.7. Mobile requests that have an HSTS header.

25%

Figure 14.8. Usage of different HSTS directives.

540. https://developer.mozilla.org/docs/Web/HTTP/Headers/Strict-Transport-Security#preloading_strict_transport_security

Part II Chapter 14 : Security

456 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/security/hsts-directives-usage.png
https://almanac.httparchive.org/static/images/2022/security/hsts-directives-usage.png
https://developer.mozilla.org/docs/Web/HTTP/Headers/Strict-Transport-Security#preloading_strict_transport_security
https://developer.mozilla.org/docs/Web/HTTP/Headers/Strict-Transport-Security#preloading_strict_transport_security

The median value for max-age attribute in HSTS headers over all requests is 365 days in both

mobile and desktop. https://hstspreload.org/ recommends a max-age of 2 years once the

HSTS header is set up properly and verified to not cause any issues.

Cookies

An HTTP cookie541 is a set of data about the user that the server sends to the browser. A cookie

can be used for things like session management, personalization, tracking and other stateful

information related to the user over different requests.

If a cookie is not set properly, it can be susceptible to many different forms of attacks such as

session hijacking542, Cross-Site Request Forgery (CSRF)543, Cross-Site Script Inclusion (XSSI)544 and

various other Cross-Site Leak545 vulnerabilities.

Cookie attributes

To defend against the above mentioned threats, developers can use 3 different attributes in a

Figure 14.9. HSTS max-age values for all requests (in days).

541. https://developer.mozilla.org/docs/Web/HTTP/Cookies
542. https://owasp.org/www-community/attacks/Session_hijacking_attack
543. https://owasp.org/www-community/attacks/csrf
544. https://owasp.org/www-project-web-security-testing-guide/v41/4-Web_Application_Security_Testing/11-Client_Side_Testing/

13-Testing_for_Cross_Site_Script_Inclusion
545. https://xsleaks.dev/

Part II Chapter 14 : Security

2022 Web Almanac by HTTP Archive 457

https://almanac.httparchive.org/static/images/2022/security/hsts-max-age-values-in-days.png
https://almanac.httparchive.org/static/images/2022/security/hsts-max-age-values-in-days.png
https://hstspreload.org/
https://developer.mozilla.org/docs/Web/HTTP/Cookies
https://owasp.org/www-community/attacks/Session_hijacking_attack
https://owasp.org/www-community/attacks/csrf
https://owasp.org/www-project-web-security-testing-guide/v41/4-Web_Application_Security_Testing/11-Client_Side_Testing/13-Testing_for_Cross_Site_Script_Inclusion
https://xsleaks.dev/

cookie: HttpOnly , Secure and SameSite . The Secure attribute is similar to the HSTS
header as it also ensures that the cookies are always sent over HTTPS, preventing Manipulator

in the Middle attacks546. HttpOnly ensures that a cookie is not accessible from any JavaScript

code, preventing Cross-Site Scripting547 Attacks.

There are 2 different kinds of cookies: first-party and third-party. First-party cookies are

usually set by the direct server that you are visiting. Third-party cookies are created by third-

party services and are often used for tracking and ad-serving. 37% of the first-party cookies on

the desktop have Secure and 36% of them have HttpOnly . However, in the third party

cookies we see that 90% of cookies have Secure and 21% of cookies have HttpOnly . The

percentage of HttpOnly is less in third party cookies, because they mostly do want to allow

access to them by JavaScript code.

Figure 14.10. Cookie attributes (desktop).

546. https://owasp.org/www-community/attacks/Manipulator-in-the-middle_attack
547. https://owasp.org/www-community/attacks/xss/

Part II Chapter 14 : Security

458 2022 Web Almanac by HTTP Archive

https://owasp.org/www-community/attacks/Manipulator-in-the-middle_attack
https://owasp.org/www-community/attacks/Manipulator-in-the-middle_attack
https://owasp.org/www-community/attacks/xss/
https://almanac.httparchive.org/static/images/2022/security/httponly-secure-samesite-cookie-usage.png
https://almanac.httparchive.org/static/images/2022/security/httponly-secure-samesite-cookie-usage.png

The SameSite attribute can be used to prevent CSRF attacks by telling the browser whether

to send the cookie to cross-site requests. Strict value allows the cookie to be sent only to

the site where it originated while Lax value allows cookies to be sent to cross-site requests

only if a user is navigating to the origin site by following a link. For None value, cookies are sent

to both originating and cross-site requests. If SameSite=None is set, the cookie’s Secure
attribute must also be set (or the cookie will be blocked). We see that 61% of first-party cookies

with the SameSite attribute have the value Lax . Most browsers default to SameSite=Lax
if no SameSite attribute is present for the cookie hence we see that it continues to dominate

the charts. In third party cookies, SameSite=None still continues to be super high with 98%

cookies in desktop, because third-party cookies do want to be sent across cross-site requests.

Cookie age

There are two different ways to set the time when a cookie is deleted: Max-Age and

Expires . Expires uses a specific date (relative to the client) to determine when the cookie

is deleted whereas Max-Age uses a duration in seconds.

Figure 14.11. Same site cookie attributes.

Part II Chapter 14 : Security

2022 Web Almanac by HTTP Archive 459

https://almanac.httparchive.org/static/images/2022/security/samesite-cookie-attributes.png
https://almanac.httparchive.org/static/images/2022/security/samesite-cookie-attributes.png

Unlike last year, where we saw that the median for Max-Age was 365 days but the median for

Expires was 180 days, this year it’s around 365 days for both. Hence the median for real

maximum age has gone up from 180 days to 365 days this year. Even though the Max-Age is

729 days and Expires is 730 days in the 90th percentile, Chrome has been planning to put a

cap of 400 days548 for both Max-Age and Expires .

Figure 14.12. Cookie age usage in days (desktop).

Figure 14.13. Most common cookie expiry values on desktop.

% Expires

1.8% “Thu, 01-Jan-1970 00:00:00 GMT”

1.2% “Fri, 01-Aug-2008 22:45:55 GMT”

0.7% “Mon, 01-Mar-2004 00:00:00 GMT”

0.7% “Thu, 01-Jan-1970 00:00:01 GMT”

0.3% “Thu, 01 Jan 1970 00:00:00 GMT”

548. https://chromestatus.com/feature/4887741241229312

Part II Chapter 14 : Security

460 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/security/cookie-age-usage-by-site-in-desktop-in-days.png
https://almanac.httparchive.org/static/images/2022/security/cookie-age-usage-by-site-in-desktop-in-days.png
https://chromestatus.com/feature/4887741241229312

The most prevalent Expires has some interesting values. We see that the most used

Expires value in Desktop is January 1, 1970 00:00:00 GMT . When cookies Expires
value is set to a past date, they are deleted from the browser. January 1, 1970 00:00:00 GMT is

the Unix epoch time and hence it’s often commonly used to expire or delete a cookie.

Content inclusion

A website’s content often takes many shapes and requires resources such as CSS, JavaScript, or

other media assets like fonts and images. These are frequently loaded from external service

providers of the likes of remote storage services of cloud-native infrastructure, or from content

delivery networks (CDNs) with the aim of reducing worldwide networking round-trips just to

serve the content.

However, ensuring that the content we include on the website hasn’t been tampered with is of

high stakes, and the impact of which can be devastating. Content inclusion is of even higher

importance these days given the recent rise of awareness to supply chain security, and growing

incidents of Magecart attacks549 that target website content systems to inject persistent

malware through means of cross-site scripting (XSS) vulnerabilities and others.

Content Security Policy

One effective measure you can deploy to mitigate security risks around content inclusion is by

employing a Content Security Policy (CSP). It is a security standard that adds a defense-in-

depth layer in order to mitigate attacks such as code injection via cross-site scripting, or

clickjacking, to name a few.

Figure 14.14. Most common cookie expiry values on mobile.

% Expires

1.2% “Fri, 01-Aug-2008 22:45:55 GMT”

0.9% “Thu, 01-Jan-1970 00:00:00 GMT”

0.7% “Mon, 01-Mar-2004 00:00:00 GMT”

0.6% “Thu, 01-Jan-1970 00:00:01 GMT”

0.2% “Thu, 31-Dec-37 23:55:55 GMT”

549. https://www.imperva.com/learn/application-security/magecart/

Part II Chapter 14 : Security

2022 Web Almanac by HTTP Archive 461

https://www.imperva.com/learn/application-security/magecart/

It works by ensuring that a predefined trusted set of content rules is upheld and any attempts

to bypass or include restricted content are rejected. For example, a content security policy that

would allow JavaScript code to run in the browser only from the same origin it was served, and

from that of Google Analytics would be defined as script-src 'self' www.google-
analytics.com; . Any attempts of cross-site scripting injections that add inline JavaScript

code such as would be rejected by the browser enforcing

the set policy.

We’re seeing a 14% relative increase in adoption for Content-Security-Policy header

from 2021’s data of 12.8% to 2022’s data of 14.6% which demonstrates a growing trend of

adoption across developers and the web security community. This is positive, though it’s still a

minority of sites using this more advanced feature.

CSP is most useful, when served on the HTML response itself and here we’re seeing consistent

growing adoption in mobile requests serving a CSP header with 7.2% two years ago, 9.3% last

year, and this year a total of 11.2% of mobile homepages.

Figure 14.15. Relative increase in adoption for Content-Security-Policy header from 2021.

+14%

Figure 14.16. Most common directives used in CSP.

Part II Chapter 14 : Security

462 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/security/csp-directives-usage.png
https://almanac.httparchive.org/static/images/2022/security/csp-directives-usage.png

The top three CSP directives that we’re seeing serving more than a quarter of the HTTP

requests for both desktop and mobile are upgrade-insecure-requests at a 54%, frame-
ancestors at 54%, and the block-all-mixed-content policy at 27%. Trailing policies are

default-src , script-src , style-src , and img-src to name a few.

The upgrade-insecure-requests policy’s high adoption rate could perhaps be attributed

to the high adoption of TLS requests as a de-facto standard. However, despite block-all-
mixed-content being considered deprecated as of this date, it’s showing a high adoption rate.

This perhaps speaks to the fast rate at which the CSP specification is advancing and users

having a hard time keeping up to date.

More to do with mitigating cross-site scripting attacks is Google’s security initiative for Trusted

Types550, which requires native browser API support to employ a technique which helps prevent

DOM-injection class of vulnerabilities. It is actively advocated by Google engineers yet is still in

draft proposal mode551 for the W3C. Nonetheless, we record its CSP related security headers

require-trusted-types-for and trusted-types at 0.1% of requests which is not a lot,

but perhaps speaks to a growing trend of adoption.

To assess whether a CSP violation from the pre-defined set of rules is occurring, websites can

set the report-uri directive that the browser will send JSON formatted data as an HTTP

POST request. Although report-uri requests account for 4.3% of all desktop traffic with a

CSP header, it is to date a deprecated directive and has been replaced with report-to which

accounts for 1.8% of desktop requests.

One of the biggest contributors to the challenge of implementing a tight content security policy

is the existence of inline JavaScript code that’s commonly set as event handlers or at other

parts of the DOM. To allow teams a progressive adoption of the CSP security standard, a policy

may set unsafe-inline or unsafe-eval as keyword values for its script-src directive.

Doing so, fails to prevent some cross-site scripting attack vectors and is counter-productive to

the preventative measure of a policy.

Teams can utilize a more secure posture of inline JavaScript code by signing them with a nonce

or a SHA256 hash. This would look like something along the lines of:

Content-Security-Policy: script-src 'nonce-4891cc7b20c'

And then referencing that in the HTML:

550. https://developer.mozilla.org/docs/Web/HTTP/Headers/Content-Security-Policy/trusted-types
551. https://w3c.github.io/trusted-types/dist/spec/

Part II Chapter 14 : Security

2022 Web Almanac by HTTP Archive 463

https://developer.mozilla.org/docs/Web/HTTP/Headers/Content-Security-Policy/trusted-types
https://developer.mozilla.org/docs/Web/HTTP/Headers/Content-Security-Policy/trusted-types
https://w3c.github.io/trusted-types/dist/spec/

<script nonce="nonce-4891cc7b20c">

 …

</script>

The statistics collected for all desktop HTTP requests show that unsafe-inline is present

on for 94%, and unsafe-eval on 80% of all script-src values. This demonstrates the real

challenges in locking down a website’s application code to avoid inline JavaScript code.

Furthermore, Only 14% of all above described requests employ a nonce- directive which

assists in securing the use of unsafe inline JavaScript code.

Perhaps speaking to the high complexity of defining a content security policy is the statistics we

observe for CSP header length.

Figure 14.17. CSP script-src attribute usage.

Part II Chapter 14 : Security

464 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/security/csp-script-src-attribute-usage.png
https://almanac.httparchive.org/static/images/2022/security/csp-script-src-attribute-usage.png

At a median ranking, 50% of requests are only up to 70 bytes in size for desktop requests. This

is a slight drop from last year’s report which showed both desktop and mobile requests at 75

bytes in size. The 90th percentile of requests and above has grown from last year’s 389 bytes

for desktop requests, to 494 bytes this year. This demonstrates a slight progress towards more

complex and complete security policies.

Observing the complete definitions for a content security policy, we can see that single

directives still make up a large proportion of all requests. 19% of all desktop requests are set

only to upgrade-insecure-requests . 8% of all desktop requests are set to frame-
ancestors 'self' and 23% of all desktop requests are set to the value of block-all-
mixed-content; frame-ancestors 'none'; upgrade-insecure-requests; which

mixes together the top 3 most common CSP directives.

The content security policy often has to allow content from other origins than its own in order

to support loading of media such as fonts, ad related scripts, and general content delivery

network usage. As such, the top 10 origins across requests are as follows:

Figure 14.18. CSP header length.

Part II Chapter 14 : Security

2022 Web Almanac by HTTP Archive 465

https://almanac.httparchive.org/static/images/2022/security/csp-header-length.png
https://almanac.httparchive.org/static/images/2022/security/csp-header-length.png

The above hosts account for roughly the same positioning in rank as was reported last year, but

the usage is up slightly.

The CSP security standard is widely supported both by web browsers, as well as content

delivery networks and content management systems and is a highly recommended tool for

websites and web applications in defense of web security vulnerabilities.

Subresource Integrity

Another defense-in-depth tool is Subresource Integrity which provides a web security

defensive layer against content tampering. Whereas a Content Security Policy defines which

types and source of content are allowed, a Subresource Integrity mechanism ensures that said

content hasn’t been modified for malicious intents.

A reference use-case for using Subresource Integrity is when loading JavaScript content from

third-party package managers which also act as a CDN. Some examples of these are unpkg.com

or cdnjs.com, both of which serve the content source for JavaScript libraries.

If a third-party library could be compromised due to a hosting issue by the CDN provider, or by

one of the project’s contributors or maintainers then you are effectively loading someone else’s

code into your website.

Figure 14.19. Most frequently allowed hosts in CSP policies.

Origin Desktop Mobile

https://www.google-analytics.com 0.39% 0.26%

https://www.googletagmanager.com 0.37% 0.25%

https://fonts.gstatic.com 0.27% 0.19%

https://fonts.googleapis.com 0.27% 0.18%

https://www.google.com 0.24% 0.17%

https://www.youtube.com 0.21% 0.15%

https://stats.g.doubleclick.net 0.19% 0.13%

https://connect.facebook.net 0.18% 0.13%

https://www.gstatic.com 0.17% 0.12%

https://cdnjs.cloudflare.com 0.16% 0.11%

Part II Chapter 14 : Security

466 2022 Web Almanac by HTTP Archive

https://www.google-analytics.com/
https://www.googletagmanager.com/
https://fonts.gstatic.com/
https://fonts.googleapis.com/
https://www.google.com/
https://www.youtube.com/
https://stats.g.doubleclick.net/
https://connect.facebook.net/
https://www.gstatic.com/
https://cdnjs.cloudflare.com/

Similar to CSP’s use of a nonce- , Subresource Integrity (also known as SRI) allows browsers to

validate the content that is served matches a cryptographically signed hash and prevents

tampering with the content, whether over the wire or at its source.

Just about one of every fifth website (20%) adopts a subresource integrity in one of its web

page elements on desktop. Out of these, 83% were specifically used in <script> type

elements on desktop, and 17% were used in <link> type elements in desktop requests.

At a per page coverage, adoption rate for the SRI security feature is still considerably low. Last

year, the median percentage for both mobile and desktop was 3.3% and this year it decreased

by 2% to 3.23%.

Subresource integrity is specified as a base64 string of a computed hash of one of SHA256,

SHA384 or SHA512 cryptographic functions. As a use-case reference552, developers can

implement them as follows:

<script src="https://example.com/example-framework.js"

 integrity="sha384-oqVuAfXRKap7fdgcCY5uykM6+R9GqQ8K/

uxy9rx7HNQlGYl1kPzQho1wx4JwY8wC"

 crossorigin="anonymous"></script>

Figure 14.20. Desktop sites using SRI.

20%

552. https://developer.mozilla.org/docs/Web/Security/Subresource_Integrity

Part II Chapter 14 : Security

2022 Web Almanac by HTTP Archive 467

https://developer.mozilla.org/docs/Web/Security/Subresource_Integrity

Consistent with last year’s report, SHA384 continues to demonstrate the majority of SRI hash

types observed between all available hash functions.

CDNs are no strangers to Subresource Integrity and provide secure defaults to their consumers

by including a Subresource Integrity value as part of their URL references for content to be

served on the page.

Figure 14.21. SRI hash functions.

Part II Chapter 14 : Security

468 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/security/sri-hash-function-usage.png
https://almanac.httparchive.org/static/images/2022/security/sri-hash-function-usage.png

The above list shows the top 10 most common hosts for which a subresource integrity value

has been observed. Notable changes from last year are the Cloudflare hosts jumping from

position 4 to position 3, and jsDelivr jumping from position 7 to position 6 in ranking, surpassing

Bootstrap’s hosts rankings.

Permissions Policy

Browsers are becoming more and more powerful with time, adding more native APIs to access

and control different sorts of hardware and feature sets that are made available to websites.

These also introduce potential security risks to users through misuse of said features, such as

malicious scripts turning on a microphone and collecting data, or fingerprinting geolocation of a

device to collect location information.

Previously known as Feature-Policy , and now named Permissions-Policy , this is an

experimental browser API that enables control to an allowlist and a denylist of a wide array of

capabilities a browser is able to access.

We’ve noticed a high correlation of usage for the Permissions-Policy with HTTPS-enabled

connections (97%), with X-Content-Type-Options (82%), and X-Frame-Options (78%).

All correlations are across desktop requests. Another high correlation is within the specific

technology intersection, observed for Google My Business mobile pages (99%), and the next

closest is Acquia’s Cloud Platform (67%). All correlations are across mobile requests.

Figure 14.22. Most common hosts from which SRI-protected scripts are included.

Host Desktop Mobile

www.gstatic.com 39% 40%

cdn.shopify.com 22% 23%

cdnjs.cloudflare.com 8% 7%

code.jquery.com 7% 7%

static.cloudflareinsights.com 5% 4%

cdn.jsdelivr.net 3% 3%

t1.daumcdn.net 3% 1%

stackpath.bootstrapcdn.com 2.7% 2.7%

maxcdn.bootstrapcdn.com 2.2% 2.3%

Part II Chapter 14 : Security

2022 Web Almanac by HTTP Archive 469

http://www.gstatic.com/

We’re seeing an 85% relative increase in adoption for Permissions-Policy from 2021’s

data (1.3%) to 2022’s data (2.4%) for mobile requests and similar trend for desktop requests

too. The deprecated Feature-Policy shows a minuscule increase of 1 percentage point

between last year’s data and this year’s which demonstrates that users are keeping pace with

web browsers’ specification changes.

Besides being used as an HTTP header, this feature can be used within <iframe> elements as

follows:

 <iframe src="https://example.com" allow="geolocation 'src'

https://example.com'; camera *"></iframe>

18.9% of 11.5 million frames in mobile contained the allow attribute to enable permission or

feature policies.

The following is a list of the top 10 allow directives that were detected in frames:

Figure 14.23. Relative increase in adoption of Permissions-Policy from 2021.

+85%
Part II Chapter 14 : Security

470 2022 Web Almanac by HTTP Archive

Interesting to point out are places 11th, 12th and 13th allow directives for mobile that didn’t

make it into the above list and they are vr with 6%, payment with 2%, and web-share with

1%. They perhaps speak of growing trends we’re seeing in the industry around virtual reality

(and the metaverse, if you will), online payments and the fintech industry. Lastly, it seems to

indicate better support for web-based sharing which is presumably due to the rise of work-

from-home habits in the last couple of years.

Iframe Sandbox

Using iframe elements in websites has been a long-time practice for developers in order to

easily embed third-party content such as rich media, cross-application components, or even

ads. Some may even assume that iframe elements form a security boundary between the

website embedding them to the sourced website, however that’s not exactly the case.

HTML <iframe> elements by default have access to top-level page capabilities such as pop-

ups or direct interaction with the top-page browser navigation. For example, the following code

could be embedded in the source of an iframe element which makes use of active user gestures

and results in the hosting website of the iframe to navigate to a new URL at

https://example.com :

Figure 14.24. Prevalence of allow directives on iframes.

Directive Desktop Mobile

encrypted-media 75% 75%

autoplay 48% 49%

picture-in-picture 31% 31%

accelerometer 26% 27%

gyroscope 26% 27%

clipboard-write 21% 21%

microphone 9% 9%

fullscreen 8% 7%

camera 6% 7%

geolocation 5% 6%

Part II Chapter 14 : Security

2022 Web Almanac by HTTP Archive 471

function clickToGo() {

 window.open('https://example.com')

}

This is largely known as a clickjacking attack and is one of many other security risks that are

embedded within iframes (pun intended).

To mitigate these concerns the HTML specification (version 5) introduced the sandbox
attribute that may be applied to iframe elements. It acts as an allowlist and if kept empty it

essentially does not enable any capabilities within the iframe element. This results in no access

to page interactivity like pop-ups, no permissions to run JavaScript code, and no access to

cookies.

The above chart of the 2022 data shows that more than 99% of websites with a sandbox
attribute enable the allow-scripts and allow-same-origin permissions.

Of desktop websites that embed an iframe, 35.2% also include the sandbox attribute.

We find that Content-Security-Policy headers which include a sandbox directive are at

a mere 0.3% usage for mobile (desktop is similar at 0.4%) which may speak to the fact that this

attribute is only applied on a per-case basis for the practice of embedding iframe content within

pages, rather than ahead-of-time planning through a content security policy definition.

Figure 14.25. Prevalence of sandbox directives on frames.

Part II Chapter 14 : Security

472 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/security/prevalence-of-sandbox-directives-on-frames.png
https://almanac.httparchive.org/static/images/2022/security/prevalence-of-sandbox-directives-on-frames.png

Attack preventions

There are many different attacks that can exploit a website, and it’s almost never possible to

fully secure your website. However, there are many steps that a web developer can take to

prevent most of these attacks, or to limit the effects of them on the users.

Security header adoptions

Security headers are one of the most common ways of preventing attacks by restricting the

kind of traffic and data flow. But most of these security headers have to be set manually by

website developers. Thus, the presence of security headers are often a good indication of the

security hygiene that the developers of the website follow.

The most widely used security mechanism is still the X-Content-Type-Options header, which is

used on 40% of the websites we crawled on mobile, to protect against MIME-sniffing attacks.

This header is followed by the X-Frame-Options header, which is enabled on 30% of all sites.

We don’t see much difference from last year’s data with a gradual increase in adoption of all the

Figure 14.26. Adoption of security headers for site requests in mobile pages.

Part II Chapter 14 : Security

2022 Web Almanac by HTTP Archive 473

https://almanac.httparchive.org/static/images/2022/security/adoption-of-security-headers.png
https://almanac.httparchive.org/static/images/2022/security/adoption-of-security-headers.png

security headers but the ranking of security headers by percentage usage is the same.

Preventing attacks using CSP

The main use of Content Security Policy (CSP) is to determine the trusted sources from which

content can be loaded safely. This makes CSP a really useful security header in preventing

various kinds of attacks such as clickjacking, cross-site scripting attacks, mixed-content

inclusion and many more.

One of the common ways to prevent clickjacking attacks is to prevent the browser from loading

the website in a frame. One can use the frame-ancestors directive in a CSP Header to

restrict other domains from including the page content in a frame. We found 53% of the

websites in mobile that have CSP have a frame-ancestor directive. It’s the second most

used CSP directive, which is good for prevention of clickjacking attacks. Setting the value of

frame-ancestors directive to none or self is the safest. none doesn’t allow any domain

to frame the content, while self allows only the origin domain to frame the contents. We

found that 8% of websites in mobile which have a CSP header have only frame-ancestors
'self' and is the third most common value of CSP header.

One of the mechanisms to defend against XSS attacks is by setting a restrictive script-src
directive for the website. This ensures that JavaScript is loaded only from a trusted source and

the attacker cannot inject some malicious code. strict-dynamic is gradually gaining more

adoption across websites with 6% websites in desktop using it compared to 5% of websites last

Figure 14.27. The percentage of website on mobile with CSP that have frame-ancestors directive.

53%

Figure 14.28. Prevalence of CSP keywords based on policies that define a default-src or

script-src directive.

Keyword Desktop Mobile

strict-dynamic 6% 5%

nonce- 12% 14%

unsafe-inline 94% 95%

unsafe-eval 80% 78%

Part II Chapter 14 : Security

474 2022 Web Almanac by HTTP Archive

https://developer.mozilla.org/docs/Web/HTTP/Headers/Content-Security-Policy/frame-ancestors
https://developer.mozilla.org/docs/Web/HTTP/Headers/Content-Security-Policy/frame-ancestors
https://content-security-policy.com/strict-dynamic/
https://content-security-policy.com/strict-dynamic/

year. strict-dynamic is helpful if you have a root script in your HTML that dynamically

loads or injects other script files. It makes use of nonce or hash on the root script and ignores

other allowlists like unsafe-inline or individual links. It’s supported in all modern browsers

apart from IE. Also, we see that unsafe-inline and unsafe-eval usage has decreased by

approximately 2% from last year. This is a step in the right direction.

Preventing attacks using Cross-Origin policies

Cross Origin policies are one of the main mechanisms used to defend against micro-

architectural attacks like Cross Site leaks. XS-Leaks are kind of similar to Cross Site Request

Forgery, however they infer small pieces of information about the user which are exposed

during interactions between websites.

Cross-Origin-Resource-Policy is present on 114,111(1.46%) websites in mobile and is

the most used cross origin policy. It is used to indicate to the browser whether a resource

should be included from cross-origin or not. Cross-Origin-Embedder-Policy is now

present in 2,559 websites compared to 911 websites last year. We see a similar growth in the

adoption of Cross-Origin-Opener-Policy as well with 34,968 websites in mobile now

having the header compared to 15,727 sites last year. So there is a steady growth in the

adoption of all the cross-origin policies, which is great because they can be really helpful in

preventing XS-Leak attacks.

Figure 14.29. Percentage of Cross Origin headers.

Part II Chapter 14 : Security

2022 Web Almanac by HTTP Archive 475

https://almanac.httparchive.org/static/images/2022/security/percentage-of-cross-origin-headers.png
https://almanac.httparchive.org/static/images/2022/security/percentage-of-cross-origin-headers.png
https://developer.mozilla.org/docs/Web/HTTP/Headers/Cross-Origin-Resource-Policy
https://developer.mozilla.org/docs/Web/HTTP/Headers/Cross-Origin-Resource-Policy
https://developer.mozilla.org/docs/Web/HTTP/Headers/Cross-Origin-Embedder-Policy
https://developer.mozilla.org/docs/Web/HTTP/Headers/Cross-Origin-Embedder-Policy
https://developer.mozilla.org/docs/Web/HTTP/Headers/Cross-Origin-Opener-Policy
https://developer.mozilla.org/docs/Web/HTTP/Headers/Cross-Origin-Opener-Policy

Preventing attacks using Clear-Site-Data

Clear-Site-Data553 provides web developers more control over clearing of user data related to

their website. For example, a web developer can now make decisions such that when a user

signs out of their web site, then all related cookie, cache, storage information about the user

can be removed. This helps in limiting the consequences of an attack by having a restricted

amount of data stored in the browser when not needed. This is a comparatively new header

which is restricted only for sites served over HTTPS and only some of the features are

supported by browsers554. There were only 75 sites in mobile which had Clear-Site-Data
header in 2021 and it has increased to 428 this year. It is worth noting that often times

websites use this header only in their logout pages, which are not tracked in the web almanac

data.

cache is the most prevalent directive (63% websites in mobile) for Clear-Site-Data which

could mean that many developers are using this security header more for clearing cache to

probably load newer static files, than for privacy and security of the user. But directives are

supposed to follow quoted-string grammar555 and hence this directive is invalid. It is great to see

that 9% of mobile websites using this header use “*” which means that they indicate the

Figure 14.30. Prevalence of Clear-Site-Data headers.

CSD Header Desktop Mobile

cache 65% 63%

* 9% 8%

“cache” 7% 7%

cookies 3% 6%

“storage” 2% 1%

cache,cookies,storage 1% 1%

“cache”, “storage” 1% 1%

"*" 1% 2%

“cache”, “cookies” 1% 0%

“cookies” 1% 1%

553. https://developer.mozilla.org/docs/Web/HTTP/Headers/Clear-Site-Data
554. https://developer.mozilla.org/docs/Web/HTTP/Headers/Clear-Site-Data#browser_compatibility
555. https://datatracker.ietf.org/doc/html/rfc7230#section-3.2.6

Part II Chapter 14 : Security

476 2022 Web Almanac by HTTP Archive

https://developer.mozilla.org/docs/Web/HTTP/Headers/Clear-Site-Data
https://developer.mozilla.org/docs/Web/HTTP/Headers/Clear-Site-Data#browser_compatibility
https://datatracker.ietf.org/doc/html/rfc7230#section-3.2.6

browser to clear all user data stored. Third most used directive is again "cache" , but used

properly this time.

Preventing attacks using <meta>

A Content-Security-Policy and Referrer-Policy can be set using a <meta> tag in

the HTML code itself for a website. For example, one can set Content-Security-Policy
using the code: <meta http-equiv="Content-Security-Policy" content="default-
src 'self'"> . We found that 0.47% and 2.60% of the websites in mobile enabled CSP and

Referrer-Policy this way.

The issue with preventing attacks using <meta> tag is if you set any other security headers

using it, then the browser will ignore that security header. For example, 2,815 sites had X-
Frame-Options in the <meta> tag. So the developer might be expecting the website to be

secure against certain attacks since they added the <meta> tag when in reality, that security

header never gets added. However, this number has gone down from 3,410 sites last year, so

maybe websites are fixing this misuse of the <meta> tag.

Web Cryptography API

Web Cryptography API556 is a JavaScript API for performing basic cryptographic operations on a

website such as random number generation, hashing, signing, encryption and decryption.

Figure 14.31. Security headers used in <meta> tags.

Meta tag values Desktop Mobile

include Referrer-Policy 3.11% 2.60%

include CSP 0.55% 0.47%

include note-allowed headers 0.08% 0.06%

556. https://www.w3.org/TR/WebCryptoAPI/

Part II Chapter 14 : Security

2022 Web Almanac by HTTP Archive 477

https://www.w3.org/TR/WebCryptoAPI/

There is not much change in the data from last year. CryptoGetRandomValues continues to

be the most adopted feature (even though its usage has dropped by approximately 1% since last

year) because of its use in generating strong pseudo-random numbers. Its high usage is

attributable to being used in common services such as Google Analytics.

Bot protection services

The internet today is filled with bots, and hence there is a constant rise in bad bot attacks.

According to 2022 Bad Bot Report557 by Imperva, 27.7% of all internet traffic was by bad bots.

Bad bots are the ones which try to scrape data and exploit it. According to the report, the end of

2021 saw a surge in bad bot attacks probably because of the log4j vulnerability which is

exploitable by bots.

Figure 14.32. Top used cryptography APIs.

Feature Desktop Mobile

CryptoGetRandomValues 69.6% 65.5%

SubtleCryptoDigest 0.6% 0.6%

CryptoAlgorithmSha256 0.5% 0.3%

SubtleCryptoImportKey 0.2% 0.1%

SubtleCryptoGenerateKey 0.2% 0.2%

SubtleCryptoEncrypt 0.2% 0.1%

SubtleCryptoExportKey 0.2% 0.1%

CryptoAlgorithmAesGcm 0.1% 0.1%

SubtleCryptoSign 0.2% 0.2%

CryptoAlgorithmAesCtr 0.1% < 0.1%

557. https://www.imperva.com/resources/reports/2022-Imperva-Bad-Bot-Report.pdf

Part II Chapter 14 : Security

478 2022 Web Almanac by HTTP Archive

https://www.imperva.com/resources/reports/2022-Imperva-Bad-Bot-Report.pdf

Our analysis shows that 29% of desktop websites and 26% of mobile websites use a mechanism

to fight malicious bots which is a significant increase from last year (11% and 10% respectively).

This increase could be because of Cloudflare Bot Management558 which is a captcha-free

solution for protection against bad bots. Last year’s data crawl didn’t track this, but identifying

this was added this year and we see 6% of websites on mobile using it. Usage of reCaptcha has

also increased from last year on both desktop and mobile by approximately 9%.

Drivers of security mechanism adoption

There are multiple driving factors for a website to adopt more security practices. The three

primary ones ares:

• Societal: more security-oriented education in certain countries, or laws that take

more punitive measures in case of a data breach

• Technological: it might be easier to adopt security features in certain technology

stacks, or certain vendors might enable security features by default

• Popularity: widely popular websites may face more targeted attacks than a website

that is little known

Figure 14.33. Usage of bot protection services by provider.

558. https://www.cloudflare.com/en-gb/products/bot-management/

Part II Chapter 14 : Security

2022 Web Almanac by HTTP Archive 479

https://almanac.httparchive.org/static/images/2022/security/bot-protection-service-usage.png
https://almanac.httparchive.org/static/images/2022/security/bot-protection-service-usage.png
https://www.cloudflare.com/en-gb/products/bot-management/

Location of website

Location of the website, where the website developers are based or where the website is

hosted can often have impacts on adoption of security features. This can be because of the

awareness among developers being different, but can also be because of the laws of the

country mandating adoption of certain security practices.

We see a lot of new countries like Nigeria, Norway and Denmark quickly rise to the top in the

adoption of HTTPS. It’s a good sign to see new countries also adopting widespread security

practices because that can be an indication of rising awareness everywhere. Also, the

difference between the least adoption and most adoption of HTTPS is reducing, which shows

that almost all countries at least strive to have HTTPS by default on their websites.

Figure 14.34. Adoption of HTTPS per country.

Part II Chapter 14 : Security

480 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/security/adoption-of-https-per-country.png
https://almanac.httparchive.org/static/images/2022/security/adoption-of-https-per-country.png

The adoption of CSP and X-Frame-Options (XFO) is very similar to last year. Surprisingly, we

see websites in Indonesia have started adopting CSP a lot, even though their adoption of

HTTPS continues to be low. The adoption of CSP still seems to be very varied across countries

but the gap between adoption of XFO is gradually decreasing. More countries need to increase

the adoption of CSP since it is a very important security feature that protects against a varied

number of attacks.

Technology stack

Another factor that can strongly influence the adoption of certain security mechanisms is the

technology stack that’s being used to build a website. In some cases, security features may be

enabled by default, for example, in content management systems.

Figure 14.35. Adoption of CSP and XFO per country.

Part II Chapter 14 : Security

2022 Web Almanac by HTTP Archive 481

https://almanac.httparchive.org/static/images/2022/security/adoption-of-csp-and-xfo-per-country.png
https://almanac.httparchive.org/static/images/2022/security/adoption-of-csp-and-xfo-per-country.png

Above we see some of the common CMS and blogging sites. A common pattern that we see

with sites that provide very little customization and focus more on content editing, like Wix,

Squarespace and Medium, is they have basic security features by default such as Strict-
Transport-Security . Content management systems like Wagtail, Plone and Drupal have

very bare minimum security features, since they are often used by developers to set up the

website and hence the responsibility to add security features are more on developers. We also

see that websites using Google Sites have many security features by default.

Figure 14.36. Security features adoption by various technology.

Technology Security features

Blogger

Content-Security-Policy (99%),

X-Content-Type-Options (99%),

X-Frame-Options (99%),

X-XSS-Protection (99%)

Wix
Strict-Transport-Security (99%),

X-Content-Type-Options (99%)

Drupal
X-Content-Type-Options (77%),

X-Frame-Options (77%)

Squarespace
Strict-Transport-Security (91%),

X-Content-Type-Options (98%)

Google Sites

Content-Security-Policy (96%),

Cross-Origin-Opener-Policy (96%),

Referrer-Policy (96%),

X-Content-Type-Options (97%),

X-Frame-Options (97%),

X-XSS-Protection (97%)

Plone X-Frame-Options (60%)

Wagtail
X-Content-Type-Options (51%),

X-Frame-Options (72%)

Medium

Content-Security-Policy (75%),

Expect-CT (83%),

Strict-Transport-Security (84%),

X-Content-Type-Options (83%)

Part II Chapter 14 : Security

482 2022 Web Almanac by HTTP Archive

Website popularity

Websites that have many visitors may be more prone to targeted attacks given that there are

more users with potentially sensitive data to attract attackers. Therefore, it can be expected

that widely visited websites invest more in security in order to safeguard their users.

We found that Strict-Transport-Security , X-Frame-Options , and X-Content-
Type-Options always have more adoption for websites which are more popular. 56.8% of the

top 1000 websites in mobile have Strict-Transport-Security, which means these websites care

more about serving their content and data only via HTTPS. The less popular websites might

have HTTPS enabled, but often seem to not add a Strict-Transport-Security header to

ensure that their website is always served over HTTPS. The numbers this year are pretty

consistent with last year’s findings.

Malpractices on the web

Cryptocurrencies continued to grow in popularity this year with more types available for

various use cases. With that continued growth and existing economic incentive, cybercriminals

have consistently leveraged this to their advantage via cryptojacking559. However the use of

crypto miners has overall trended downward since last year. What seems to occur is certain

Figure 14.37. Prevalence of security headers set in a first-party context by rank.

559. https://en.wikipedia.org/wiki/Cryptojacking

Part II Chapter 14 : Security

2022 Web Almanac by HTTP Archive 483

https://almanac.httparchive.org/static/images/2022/security/prevalence-of-headers-in-sites-by-rank.png
https://almanac.httparchive.org/static/images/2022/security/prevalence-of-headers-in-sites-by-rank.png
https://en.wikipedia.org/wiki/Cryptojacking

vulnerability events that enable attackers to inject crypto miners into systems on both desktop

and mobile triggers a spike in their usage:

As an example, around July and August of 2021, there were reports of several cryptojacking

campaigns and vulnerabilities1,2,3 which could be the cause for the spikes in cryptominers

found in websites around that time. More recently, in April of 2022 hackers attempted to

leverage the SpringShell vulnerability to set up and run crypto miners560.

Getting into the specifics of the cryptominers found in use among websites on both desktop

and mobile we found that the share among miners has spread from last year. For example,

Coinimp’s share has shrunk since last year by about 24% while Minero.cc has grown by about

11%.

Figure 14.38. Cryptominer usage.

560. https://arstechnica.com/information-technology/2022/04/hackers-hammer-springshell-vulnerability-in-attempt-to-install-cryptominers/

Part II Chapter 14 : Security

484 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/security/cryptominer-usage.png
https://almanac.httparchive.org/static/images/2022/security/cryptominer-usage.png
https://arstechnica.com/information-technology/2022/04/hackers-hammer-springshell-vulnerability-in-attempt-to-install-cryptominers/

These results suggest that cryptojacking continues to be a serious attack vector each year with

usage spikes based on newly emerged vulnerabilities that enable them. Therefore proper

diligence is still required in order to mitigate risks in this space.

Note that not all of these websites are infected. Website operators may also deploy this

technique (instead of showing ads) to finance their website. But the use of this technique is also

heavily discussed technically, legally, and ethically.

Please also note that our results may not show the actual state of the websites infected with

cryptojacking. Since we run our crawler once a month, not all websites that run a cryptominer

can be discovered. This is the case, for example, if a website remains infected for only X days

and not on the day our crawler ran.

Well-known URIs

Well-known URIs561 are used to designate specific locations to data or services related to the

overall website. A well-known URI is a URI562 whose path component begins with the characters

/.well-known/

Figure 14.39. Cryptominer market share (mobile).

561. https://datatracker.ietf.org/doc/html/rfc8615
562. https://datatracker.ietf.org/doc/html/rfc3986

Part II Chapter 14 : Security

2022 Web Almanac by HTTP Archive 485

https://almanac.httparchive.org/static/images/2022/security/cryptominer-market-share.png
https://almanac.httparchive.org/static/images/2022/security/cryptominer-market-share.png
https://datatracker.ietf.org/doc/html/rfc8615
https://datatracker.ietf.org/doc/html/rfc3986

security.txt

security.txt is a file format for websites to provide a standard for vulnerability reporting.

Website providers can provide contact details, PGP key, policy, and other information in this

file. White hat hackers and penetration testers can use this information to conduct security

analyses on these websites and report a vulnerability.

The percentage of security.txt URIs with the expires property has increased from 0.7%

to 2.3% this year. The expires property is a required property based on the standard, so it is

good to see more websites adhering to the standard. policy continues to be the most

popular property in a security.txt URI. policy is very essential in a security.txt URI

since it describes the steps to be followed by a security researcher to report a vulnerability.

change-password

The change-password well-known URI is a specification under the Web Application Security

Working Group of the W3C which is in editor’s draft state right now. This specific well-known

URI was suggested as a way for users and softwares to easily identify the link to be used for

changing passwords.

Figure 14.40. Use of security.txt properties.

Part II Chapter 14 : Security

486 2022 Web Almanac by HTTP Archive

https://datatracker.ietf.org/doc/html/draft-foudil-securitytxt-12
https://datatracker.ietf.org/doc/html/draft-foudil-securitytxt-12
https://almanac.httparchive.org/static/images/2022/security/usage-of-properties-in-well-known-security.png
https://almanac.httparchive.org/static/images/2022/security/usage-of-properties-in-well-known-security.png
https://w3c.github.io/webappsec-change-password-url/
https://w3c.github.io/webappsec-change-password-url/

The adoption of this well-known URI is still pretty low. The specification is still work-in-

progress so it’s understandable that not many websites have started adopting it. Also, not all

websites will have a change-password form, especially if they don’t have a sign-in system for

their website.

Detecting Status Code Reliability

This particular well-known URI determines the reliability of a website’s HTTP response status

code. This URI is also still in editor’s draft563 state and may change in the future. The idea behind

this well-known URI is that it should never exist in any website. So this well-known URI should

never respond with an ok-status564. If it redirects and returns an “ok-status”, that means the

website’s status codes are not reliable.

Figure 14.41. Use of change-password endpoint.

563. https://w3c.github.io/webappsec-change-password-url/response-code-reliability.html
564. https://fetch.spec.whatwg.org/#ok-status

Part II Chapter 14 : Security

2022 Web Almanac by HTTP Archive 487

https://almanac.httparchive.org/static/images/2022/security/usage-of-change-password.png
https://almanac.httparchive.org/static/images/2022/security/usage-of-change-password.png
https://w3c.github.io/webappsec-change-password-url/response-code-reliability.html
https://fetch.spec.whatwg.org/#ok-status

We found that 84% of websites in both mobile and desktop respond with a not-ok status for

this well-known URI. The good thing about this specification is if websites are correctly

configured, this specification should automatically work and won’t need website developers to

make any specific changes.

Conclusion

Our analysis this year shows that websites are continuing to make improvements in their

security features like we have seen over the past years. It’s also exciting to see that many

countries who were behind on web security adoptions are increasing their usage. This could

mean that awareness around web security in general is increasing.

We found that web developers are also slowly adopting new standards and replacing the old

ones. This is definitely a step in the right direction. The importance of security and privacy on

the internet is growing everyday. The web keeps becoming an integral part of life for many

people and hence, web developers should continue to increase the usage of web security

features.

There’s still a lot of progress that we need to do in setting stricter Content Security Policy.

Figure 14.42. Statuses of the resource-that-should-not-exist-whose-status-code-should-not-be-200
endpoint.

Part II Chapter 14 : Security

488 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/security/detecting-status-code-reliability.png
https://almanac.httparchive.org/static/images/2022/security/detecting-status-code-reliability.png

Cross-site scripting continues to be in OWASP Top 10565. There needs to be wider adoption of

stricter script-src directives to prevent such attacks. Also, more developers can look into

taking advantage of Web Cryptography API. Similar efforts need to be made in adopting well-

known URIs like security.txt. Not only does it provide a way for security professionals to report

vulnerabilities in the website, but it also shows that the developers care about the website’s

security and are open to making improvements.

It’s encouraging to observe the continuous progress in usage of web security over the past

years, but the web community needs to continue researching and adopting more security

features since the web continues to grow and security becomes more crucial.

Authors

Saptak Sengupta

@Saptak013 SaptakS https://saptaks.website

Saptak S is a human rights centered web developer, focusing on usability, security,

privacy and accessibility topics in web development. He is a contributor and

maintainer of various different open source projects like The A11Y Project566,

OnionShare567 and Wagtail568. You can find him blogging at saptaks.blog569.

Liran Tal

@liran_tal lirantal https://twitter.com/liran_tal

Known for his open source and JavaScript security initiatives, Liran Tal570 is an

award-winning software developer, security researcher, and open source

champion in the JavaScript community. He’s an internationally recognized GitHub

Star571, acknowledged for his open source advocacy, and has received the OpenJS

Foundation’s Pathfinder for Security572 for his work on Node.js security. His

contributions to developer security education include leading OWASP projects,

building supply chain security tools, participation in CNCF and OpenSSF

initiatives, and authoring books such as O’Reilly’s Serverless Security. He leads the

developer advocacy team at Snyk.io and is on a mission to empower developers

with better application security skills.

565. https://owasp.org/Top10/
566. https://www.a11yproject.com
567. https://onionshare.org/
568. https://wagtail.org/
569. https://saptaks.blog
570. https://www.lirantal.com/
571. https://stars.github.com/profiles/lirantal/
572. https://openjsf.org/announcement/2022/06/07/first-ever-javascriptlandia-awards-celebrate-community-leaders/

Part II Chapter 14 : Security

2022 Web Almanac by HTTP Archive 489

https://owasp.org/Top10/
https://twitter.com/Saptak013
https://github.com/SaptakS
https://saptaks.website/
https://www.a11yproject.com/
https://onionshare.org/
https://wagtail.org/
https://saptaks.blog/
https://twitter.com/liran_tal
https://github.com/lirantal
https://twitter.com/liran_tal
https://www.lirantal.com/
https://stars.github.com/profiles/lirantal/
https://stars.github.com/profiles/lirantal/
https://openjsf.org/announcement/2022/06/07/first-ever-javascriptlandia-awards-celebrate-community-leaders/

Brian Clark

@_clarkio clarkio https://www.clarkio.com

Brian is a web developer with in-depth experience in application security. He helps

developers build secure web applications through his work as a Developer

Advocate at Snyk.io. While he has experience working across full stack projects,

his focus is on backend services, API’s and developer tools. Brian loves to teach

developers what he’s learned from the successes and failures he’s had throughout

his career. You can find him doing just that on his weekly livestreams573 or in one of

his Pluralsight courses574.

573. https://clarkio.live
574. https://www.pluralsight.com/authors/brian-clark

Part II Chapter 14 : Security

490 2022 Web Almanac by HTTP Archive

https://twitter.com/_clarkio
https://github.com/clarkio
https://www.clarkio.com/
https://clarkio.live/
https://www.pluralsight.com/authors/brian-clark

Part II Chapter 15

Mobile Web

Written by Cindy Krum
Reviewed by Dave Smart, David Fox, and Hemanth HM
Analyzed by Sia Karamalegos and Rick Viscomi
Edited by Rick Viscomi

Introduction

Mobile access to web content is a critical aspect of internet access as a whole. In fact, in many

situations and regions, it is the default means of accessing the internet575. It is also often the

backbone of communication576 that happens seamlessly on platforms that use desktop, native

app, and web apps to facilitate cross-device behavior and allows consumers to use their

preferred method of access, simplifying and further democratizing information and

communication online.

This chapter will outline the state of the web in 2022 when it is accessed from a mobile device.

In some cases, mobile data is compared to desktop data, which many people are more familiar

with. This comparison is important because though many will focus on desktop data, there is

now more mobile web traffic around the world than there is desktop, and this has been the case

since about 2016 or 2017, depending on the source.

575. https://www.gsma.com/mobileeconomy/wp-content/uploads/2022/02/280222-The-Mobile-Economy-2022.pdf
576. https://www.investopedia.com/is-having-a-smartphone-a-requirement-in-2021-5190186

Part II Chapter 15 : Mobile Web

2022 Web Almanac by HTTP Archive 491

https://www.gsma.com/mobileeconomy/wp-content/uploads/2022/02/280222-The-Mobile-Economy-2022.pdf
https://www.investopedia.com/is-having-a-smartphone-a-requirement-in-2021-5190186

Worldwide connectivity

As seems to always be the case, we are living in a more connected world this year than the

world has ever experienced. The evolution of mobile technology and mobile web has been

fueled not only by more than two years of even more digital-focused commerce caused by the

COVID-19 pandemic, but also the growth and evolution of 5G communication networks, cloud

and hybrid-cloud computing environments, and the growing adoption of digital and voice

assistants, “casting” technology, and IoT.

New generations are getting involved in social media and have earlier access to mobile

technology, and it is more readily socially acceptable than ever before. So, the growth of

connectivity marches on, with no end in sight, and children, teens, and young adults of

today—colloquially referred to as digital natives because they were born into the digitally

connected world—are sure to push the evolution of mobile technology, mobile web, and

connectivity to new highs. All this progress makes the newest technology of today look

foundational and fundamental for technologies of the future.

Traffic from mobile versus desktop

In keeping with the Methodology, the primary data source for this report is the HTTP Archive

and the Chrome UX Report (CrUX). In cases where tablet data was included as a separate

measurement from any data source, it was omitted, since it does not neatly fit in the primary

mobile or desktop classifications and can add confusion and complexity when interpreting or

contrasting mobile and desktop information that is more neatly segmented out. Refer to the

CrUX documentation577 for more information about eligible mobile platforms.

577. https://developer.chrome.com/docs/crux/methodology/#user-eligibility

Part II Chapter 15 : Mobile Web

492 2022 Web Almanac by HTTP Archive

https://developer.chrome.com/docs/crux/methodology/#user-eligibility

Across the most popular ranks, the percentage of sites with more mobile traffic than desktop

traffic has increased relative to last year578. In 2022, 88% of the top 1,000 most popular sites

receive more traffic from mobile devices than desktop, up from about 85% in 2021. And among

the top 10,000 most popular sites, 89% of them receive more traffic from mobile devices and

that is up from about 86% in 2021 - so roughly a 3% increase in sites that receive more mobile

traffic than desktop in both of those to top-popularity ranking groups.

According to Oberlo, about 58%579 of web traffic in 2022 is from mobile devices. The consistent

growth and pervasiveness of these statistics is a clear indication of the obvious increasing

importance in the overall evaluation of mobile web access and interactions.

Communication from the mobile web

The value of the mobile web is largely in its ability to seamlessly connect people to other people

and to information in an ongoing, portable, familiar, and unobtrusive way. Phones have always

been primarily for communication, but the addition of the mobile web to the mobile phone

fundamentally changed how phones are seen, used, and evaluated. This section of the report

will go through how we can perceive the most important aspects of communication from the

mobile web, and how potential for communication is reflected in mobile websites.

Figure 15.1. Annual comparison of the percent of websites that receive more mobile traffic than
desktop, segmented by popularity ranking.

578. https://almanac.httparchive.org/en/2021/mobile-web#traffic-use-by-popularity
579. https://www.oberlo.com/statistics/mobile-internet-traffic

Part II Chapter 15 : Mobile Web

2022 Web Almanac by HTTP Archive 493

https://almanac.httparchive.org/static/images/2022/mobile-web/pct-mobile-traffic-rank.png
https://almanac.httparchive.org/static/images/2022/mobile-web/pct-mobile-traffic-rank.png
https://almanac.httparchive.org/en/2021/mobile-web#traffic-use-by-popularity
https://www.oberlo.com/statistics/mobile-internet-traffic

Alternative protocol links

Being that mobile devices are so critical in people’s daily communication, it can be interesting to

evaluate the most common types of link formatting that is present in the mobile web,

something called alternative protocol links. Rather than linking one page on a website to another

page on a website, these alternative protocols link to a type of activity other than web

browsing.

The figure above outlines how the different alternative protocol links are being used on the

web in 2022. The most popular options are: mailto for email, tel to make a call, sms to

send a text message, and other application-specific protocols for different messaging services

like WhatsApp, Skype, and Viber.

The mailto protocol is found on 29% of mobile pages. Close behind is the tel protocol,

found on 27% of pages. That these protocols are found more on mobile pages is potentially

indicative that websites are being modified with functionality to encourage a more multi-modal

experience on mobile, like placing a call, which would be more complex to execute on desktop.

Figure 15.2. Adoption of alternative protocols used on mobile web pages.

Figure 15.3. Percent of mobile pages that use the sms link protocol.

0.27%

Part II Chapter 15 : Mobile Web

494 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/mobile-web/alt-protocols.png
https://almanac.httparchive.org/static/images/2022/mobile-web/alt-protocols.png

Adoption of the sms protocol on mobile websites is much lower, coming in at 0.27%. This is

interesting because linking someone to a pre-formatted SMS message can be an effective way

to encourage people to sign up for an SMS loyalty program that can keep users much more

engaged with a brand in the long-term, but it seems likely that designers, developers, or

marketers do not consider this when they are building a site.

Messaging application links are used very rarely by comparison, at less than 1% adoption. This

could potentially be explained by the growth of deep linking on the mobile web, whereby an app

can be directly opened and navigated to a deep section within the app.

Input fields

Engagement and interactivity are critical for a good mobile web experience, but for years many

developers have overlooked setting specific type declarations for mobile users, to ensure that

the correct keyboard appears immediately, when the user finally decides to interact. The

correct setting will return a number keyboard when a user is entering a phone number, and a

keyboard that includes an @ symbol when they are entering an email address. Other types of

input fields include submit functions, searches, checkboxes, password fields, radio buttons,

other buttons, or as hidden elements.

Since modulating keyboards with input fields is much more important on mobile than it is on

desktop, we track the most popular mobile input types across their archive of websites. In

2022, text was still the most popular input type, used on 71% of pages, which is down slightly

Figure 15.4. Adoption of input types.

Part II Chapter 15 : Mobile Web

2022 Web Almanac by HTTP Archive 495

https://almanac.httparchive.org/static/images/2022/mobile-web/input-types.png
https://almanac.httparchive.org/static/images/2022/mobile-web/input-types.png

from last year580 at 73%. hidden was the next most common input type at 53% of pages, then

submit at 38%.

After the most common input types, there is a cluster of input types that occur on around one

quarter of the pages. These include email , no input fields (N/A) and checkbox at 27%,

followed by search at 25%.

Compared to last year, checkbox , email , and search have increased a bit in prevalence.

This possibly indicates more attention to the mobile use-case than in previous years, when

more input fields may have been less indiscriminately lumped together as simply text .

Advanced input types

Advanced input types include color , date , datetime-local , email , month , number ,

range , reset , search , tel , time , url , week , datalist . They are considered

advanced because they were introduced in the HTML 5 specification to alter the input method

in the browser, generally changing the presentation of options that a user can interact with on

the mobile site.

Of pages with at least one input, 47% of them use one or more advanced input types, which is

up from 2021, when only 45% of mobile sites used an advanced input type.

In general, the use of specialized input fields and protocols can help make visitor interactions

more engaging, useful, and efficient. It is unfortunate that it is still quite common for input fields

and related functionality to be so often overlooked on the mobile web, but it is not entirely

disheartening. These types of mobile controls have been around for many years, but they may

be growing outdated or may now be executed by web app functionality and JavaScript, rather

than by the traditional methods of coding that are expected in this type of analysis.

Similarly, with the evolution of deep links, which can open and directly navigate to a deep

screen within a native app, specialized input fields might not be as necessary. In some cases,

brands may try to push visitors from a website to an app, if they believe that it will provide users

with a better experience or have better overall conversion statistics than the website. This is

especially true when apps are the main focus of the company, or when the apps are being more

Figure 15.5. Percent of mobile pages that use advanced input types.

47%

580. https://almanac.httparchive.org/en/2021/mobile-web#type-declarations

Part II Chapter 15 : Mobile Web

496 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/en/2021/mobile-web#type-declarations

actively updated and maintained than the website. This is rarely technically necessary, since

both websites and apps can basically complete all of the necessary tasks, so it is mostly about

the brand’s preference, or their own internal success metrics.

The variations on input fields are generally included to make web interaction more profitable

for the company and more efficient for the user. They are often associated with digital checkout

processes, and thus, can directly impact the bottom line. For some brands, the importance of

the functionality may make it more likely that developers push users to a native app to

complete a purchase, in order to streamline the processing, leverage saved user loyalty

information, or speed up the completion of the transaction. This perception that native apps are

better for this kind of interaction seems misguided though. Now, most consumers expect to

have a smooth and seamless experience wherever they begin their encounter, rather than being

forced to transition from web to app or vice versa. Whenever possible, parity between app and

web functionality should be a top priority and advanced input methods can help with this,

especially for things that impact the bottom line, like checkout processes.

It is possible that traditional input fields—whether they are link protocols, input types, or

advanced input types—may just be handled by deep links to apps, and these are handled

differently. The protocols for linking to apps that may be replacing some web functionality is

broadly called deep linking, or Universal Links on iOS and Android App Links on Android. In code,

these links look just like a regular web link, and the launching of the app is handled by a web app

manifest file hosted in the /well-known directory at the root of the website. That said, it is

hard to make assumptions about what changes and variations in these numbers mean in a

practical interpretation, because we don’t know if losses and gains are absolute, or if there is

just a transitioning of technology and norms in these aspects of the mobile web.

Looking at this topic in another light, it may also be too high of an expectation that developers

specifically code the input types and variations for everything on their site. It may be possible

for mobile browsers to do more of the heavy lifting in determining what the right action or

keyboard layout is for a particular link or input field, based on obvious clues from the code or

previous user interactions. Browsers may even be able to leverage this very research to

optimize experiences like that.

For example, if every user that clicks on a particular input field switches to the number

keyboard or submits only numbers, maybe the browser could find a way to use that kind of

interaction and metadata to heuristically enable the numeric keyboard by default. We hope

that browsers will continue the trend of simplifying tasks that have historically been complex

and inefficient for site owners to code, relieving developers of the burden. When browsers

assume more responsibility for aspects of interactivity, it allows them to live up to their

namesake role as the user agent, rather than pushing all the responsibility for good user

experiences on the site owners. These heuristic defaults for web-only sites, along with deep

links to apps when their enhanced potential for functionality are available, seem like the ideal

Part II Chapter 15 : Mobile Web

2022 Web Almanac by HTTP Archive 497

path forward.

Accessibility on the mobile web

Mobile devices are cheaper, lighter, and more portable than computers, so they house a lot of

potential to help populations that have historically been ignored or marginalized by technology,

often with only minor tweaks to a site’s accessibility. According to Google581, true accessibility on

the web means that “the site’s content is available, and its functionality can be operated by

literally anyone.” In a more detailed explanation, Google offers that:

Web accessibility and mobile web accessibility are evolving in their importance and prevalence

in the conversations and general consciousness of the web as a whole. Building more accessible

sites will allow the mobile web to reach more users582 and potential customers for businesses

online. It will also help position information and associated brands as inclusive and in-touch

with the needs of all users rather than perpetuating insensitivity and further marginalization by

only considering the average user.

Accessibility concerns can be broken down into three types: situational, temporary, and

permanent. In most cases, it is possible to imagine circumstances in which an aspect of web

accessibility is critical for someone with a permanent impairment while also being incredibly

useful for people with situational or temporary impairments. And while it is not explicitly

rewarding aspects of accessibility with rankings, meeting web accessibility standards often has

the side benefit of improving organic rankings583 in Google search results.

The W3C584 summarizes the basic tenets of accessibility in four groups of concerns, which make

the website: perceivable (something you can see or hear), operable (buttons and gestures you can

use), understandable (layout and presentation concerns), and robust (ability to enter and submit

forms and information). The elements that we focus on here fall mostly under the perceivable

and operable groups, including: color contrast, tap targets, and zooming and scaling.

It is possible that the increased focus on mobile accessibility will reframe the function and

importance of mobile and digital communication, especially if it helps us to reassert the

Accessibility, then, refers to the experience of users who might be outside the

narrow range of the “typical” user, who might access or interact with things

differently than you expect. Specifically, it concerns users who are experiencing

some type of impairment or disability - and bear in mind that that experience

might be non-physical or temporary. "

581. https://web.dev/accessibility/#what-is-accessibility
582. https://moz.com/blog/seo-and-accessibility-introduction
583. https://searchengineland.com/seo-accessibility-tips-deaf-disabled-386577
584. https://www.w3.org/TR/mobile-accessibility-mapping/

Part II Chapter 15 : Mobile Web

498 2022 Web Almanac by HTTP Archive

https://web.dev/accessibility/#what-is-accessibility
https://moz.com/blog/seo-and-accessibility-introduction
https://searchengineland.com/seo-accessibility-tips-deaf-disabled-386577
https://www.w3.org/TR/mobile-accessibility-mapping/

humanity of digital technology and communication. This is particularly important in cultures

where the increased digital connectivity may actually be perpetuating isolation and a lack of

real-world connectivity. Making the mobile web more accessible should have a direct and

indirect positive impact on mobile technology and society at large.

Color contrast

Color contrast is an important aspect of mobile web accessibility for a large variety of reasons,

and it is one of the easiest accessibility needs to spot and update when reviewing a mobile site.

On mobile devices, where screens are always small and fonts may be smaller than normal,

having good color contrast can make a big difference in the legibility of the content. When any

kind of vision impairment is present, including common afflictions like color blindness,

glaucoma, or cataracts, viewing web content on a mobile phone can be difficult or impossible.

Even people with perfect vision can sometimes struggle to consume mobile web content on a

screen when the screen is dirty, has a lot of glare, or the user is in bright sunlight. A high

contrast ratio between the colors of a mobile site can help make it easier to use and appreciate,

even in bad conditions and even for people with perfect vision.

That said, many people don’t have perfect vision and use glasses or contact lenses to help them

see. People with perfect vision can expect their vision to eventually degrade as they age, at least

to some degree, so this accessibility standard is one that we can expect to impact everyone,

albeit eventually.

Given the stakes, it is sad that only 23% of mobile sites this year actually have adequate color

contrast. This is only one full percentage point up from the 2021 statistic (22%), so it is an

improvement, but not a substantial improvement. When we look back further, this statistic has

actually been 22% since 2019, so there has been almost no improvement in 4 years -

Disappointing for something that is widely considered the most impactful accessibility

standard on the web.

According to the US General Services Administration585, site owners should “make sure the

contrast between the text and background is greater than or equal to 4.5:1 for small text and

Figure 15.6. Percent of mobile pages with sufficient color contrast.

23%

585. https://accessibility.digital.gov/visual-design/color-and-contrast/

Part II Chapter 15 : Mobile Web

2022 Web Almanac by HTTP Archive 499

https://accessibility.digital.gov/visual-design/color-and-contrast/

3:1 for large text.” The W3C586 backs this ratio and also adds an enhanced guideline that calls for

“a contrast of at least 7:1 (or 4.5:1 for large-scale text).” Obviously there are more mobile sites

that miss the mark for enhanced accessibility, making that statistic likely far below the 23% that

meet the basic requirements for color contrast on mobile sites.

If enhancing the perceivability of a site by improving the color contrast and making it actually

usable is not enough of an incentive, having a minimum level of contrast between text and

background colors has long been an important element for ranking in Google searches as well.

It started as a means of preventing spammers from including hidden text on websites, which

was often white text on a white background. Later, Google moved it over to be part of the

original Mobile Friendly587 guidelines, and now is simply included as part of their general

guidelines for designing websites that are good for users.

Color contrast is something that we would like to encourage webmasters to focus on, especially

in light of new color capabilities in browsers, like dark-mode . If you are making site updates to

improve your sites compatibility in dark-mode , you should ideally also take the time to

improve overall color contrast as part of that project. This feature is often easier for some

people to use, so you can count this combined effort as a double-benefit!

Tap targets

Tap targets are effectively the clickable elements on a page. Since many designers and

developers still think about websites as being designed on and for desktop interactions rather

than mobile-first, it can be common to overlook having large enough spaces for touchscreen

interactions, on which navigation and clicking with a finger is so much less precise. On mobile

devices, when things are resized and rearranged to fit the smaller screen, it is common for

linked elements to be close together. This can become a problem if multiple clickable elements

are clustered together, as they might appear in a navigation menu or footer.

Having appropriately sized tap targets makes it less likely that a user will errantly click on the

wrong button or link, and have to navigate back to try the click again. It is also not ideal to

expect users to zoom in on the mobile screens simply to click the right button. From an

accessibility standpoint, having appropriately sized tap targets is also important for users that

have any kind of motor impairment588, or difficulty with fine motor skills.

586. https://www.w3.org/TR/mobile-accessibility-mapping/#h-contrast
587. https://developers.google.com/search/mobile-sites/get-started
588. https://www.w3.org/WAI/WCAG21/Understanding/target-size.html#benefits

Part II Chapter 15 : Mobile Web

500 2022 Web Almanac by HTTP Archive

https://www.w3.org/TR/mobile-accessibility-mapping/#h-contrast
https://developers.google.com/search/mobile-sites/get-started
https://support.google.com/chrome/answer/9275525?hl=en&co=GENIE.Platform%3DAndroid
https://support.google.com/chrome/answer/9275525?hl=en&co=GENIE.Platform%3DAndroid
https://css-tricks.com/a-complete-guide-to-dark-mode-on-the-web/
https://css-tricks.com/a-complete-guide-to-dark-mode-on-the-web/
https://www.w3.org/WAI/WCAG21/Understanding/target-size.html#benefits

The minimum size for a tap target is generally considered to be no smaller than 48 pixels by 48

pixels, which is a rough estimation of the size of a finger being used on a touchscreen. Tap

targets are also expected to be a minimum of 8 pixels apart from each other in order to pass any

of Google’s evaluations. In our research, 42% of mobile sites had sufficient tap targets, which is

disappointing as less than half of the sites manage to universally have appropriately sized tap

targets.

Pages that fail the audit generally have more than one failing link. The median number of failing

tap targets is five, but in some cases, when sites fail, the number of failing tap targets can be

quite high. We see that the worst 10 percent of sites have at least 27 failing tap targets.

Zooming and scaling

Mobile devices have become a big part of daily life for most people, and the expectation is that

interaction with mobile web content should be quick and easy. How websites handle zooming

and scaling can go a long way to improving interactions on mobile. There are different takes on

Figure 15.7. Percent of mobile pages with sufficient tap targets.

42%

Figure 15.8. Distribution of the number of tap target failures per page.

Part II Chapter 15 : Mobile Web

2022 Web Almanac by HTTP Archive 501

https://almanac.httparchive.org/static/images/2022/mobile-web/tap-target-failures.png
https://almanac.httparchive.org/static/images/2022/mobile-web/tap-target-failures.png

this, and while most will agree that you need to set a proper initial scale in the viewport for

mobile users (<meta name="viewport" content="width=device-width,
initial-scale=1">), there is not universal agreement about the second part of a viewport

setting, which controls if you should or shouldn’t disable scaling and zooming (…user-
scalable=no"> or perhaps …user-scalable=yes">). Most authorities, including the

W3C589, suggest that restricting scaling and zooming can create a bad user experience and

adversely impact accessibility, so it should be avoided. Settings for minimum-scale and

maximum-scale can also be set, and these are often safer limits, if a developer believes that

limits are needed.

Zooming can be a good workaround for a user who is visually impaired, or anyone who just

doesn’t have their reading glasses handy when they need them. On the other hand, it can be

hard to build sites that universally scale well on mobile. There are many different font size

settings that would need to be accommodated, and getting it wrong can make the site much

harder to interact with. This is why some designers prefer to prevent scaling and zooming, to

ensure that the page renders in a highly predictable way that is not impacted by scaling and

zooming. While this is true, disabling zooming and scaling impedes the usability of a mobile site,

and thus, should be avoided for the sake of accessibility.

Of the mobile websites in the top 1,000 rank, 40% of them had disabled zooming and scaling,

Figure 15.9. Annual comparison of the percent of websites that disable zooming and scaling,
segmented by popularity ranking.

589. https://www.w3.org/WAI/standards-guidelines/act/rules/b4f0c3/proposed/

Part II Chapter 15 : Mobile Web

502 2022 Web Almanac by HTTP Archive

https://www.w3.org/WAI/standards-guidelines/act/rules/b4f0c3/proposed/
https://www.w3.org/WAI/standards-guidelines/act/rules/b4f0c3/proposed/
https://almanac.httparchive.org/static/images/2022/mobile-web/zoom-scale-rank.png
https://almanac.httparchive.org/static/images/2022/mobile-web/zoom-scale-rank.png

down from about 45% in 2021. When you look at the top 10,000, 36% of mobile sites had

disabled scaling and zooming, and this is down from about 41% in 2021. Looking at the other

end of the scale, the widest ranking group, which includes all the sites in the data set, 28% of

sites prevented zooming and scaling, down from about 29% in 2021. Overall, what we can see

here is that the prevalence of this accessibility-limiting setting is on the decline, especially for

the most popular sites, which is good news, but the fact that more than half of the sites are still

using this type of limiting setting is disappointing.

As a whole, we know that accessibility concerns are not going to go away, and as time

progresses, meeting accessibility standards will become a basic expectation—especially on

mobile devices. As is often the case, the use cases for mobile interactivity are more broad-

ranging compared to desktop, so users’ expectations are higher, even though the development

constraints for web mobile content make it more difficult to actually achieve. Nevertheless,

accessibility is becoming a critical component of good web design, and should be embraced to

create a more inclusive mobile web. It is good to see that there is increasing adherence to basic

accessibility guidelines, but there is still considerable room for improvement.

For many years, Google has created a positive impact on the web by rewarding websites that

meet certain basic requirements with better rankings. They have done it for load time,

performance, security and mobile-friendliness, but not yet for accessibility. Google does write

and support a lot of advancements for web accessibility in their official communications, but

there is an opportunity to do more. While many accessibility updates do naturally have a

positive impact on website rankings, it may be time for Google to explicitly incentivize some

level of compliance to basic accessibility standards with better rankings—not just because they

can enhance the semantic understanding of a website, but also because they simply make the

web a better place for everyone.

Mobile performance

One of the most complex problems that site owners have to address on the mobile web is

performance, which is experienced as the delay that users incur when they request or interact

with websites on smaller devices. Though they have evolved quite a lot, mobile devices still

generally have less-powerful processors than larger devices and are often getting data over

slower and less reliable internet connections. In addition, the probability that users may incur a

cost for mobile data requests, especially if they go over a plan limit, makes efficiency important

as a practical concern, beyond just its impact on user experience and speed.

Part II Chapter 15 : Mobile Web

2022 Web Almanac by HTTP Archive 503

Core Web Vitals

Core Web Vitals590 is a collection of performance metrics that Google compiles to evaluate

different websites, and specifically, different page groups591 on websites to describe how they

perform in both mobile and desktop page settings. The elements of Core Web Vitals include

loading, interactivity, and layout stability.

All three are aspects of how users perceive the performance of a page that can help or hinder

the loading experience for users. This type of evaluation began in May of 2020, and these

metrics are taken into account in Google’s ranking algorithm specifically as an aspect of the

page experience592 evaluation, and thus, the metrics are organized around thresholds of

performance that are either considered “good”, “needs improvement”, or “poor”. For a site to be

considered “good”, 75% of visits must meet the prescribed thresholds for each of the Core Web

Vitals metrics.

The figure above shows how the overall performance of the web has changed since Core Web

Vitals first launched in 2020. You can see that overall, mobile websites are consistently

improving year over year. In 2022, 39% of websites have good Core Web Vitals experiences on

mobile devices. See the Performance chapter for a deeper look at what may have caused such a

significant change this year.

Figure 15.10. Annual comparison of the percent of websites having good Core Web Vitals on mobile.

590. https://web.dev/vitals/
591. https://support.google.com/webmasters/answer/9205520#page_groups
592. https://developers.google.com/search/docs/advanced/experience/page-experience

Part II Chapter 15 : Mobile Web

504 2022 Web Almanac by HTTP Archive

https://web.dev/vitals/
https://support.google.com/webmasters/answer/9205520#page_groups
https://developers.google.com/search/docs/advanced/experience/page-experience
https://almanac.httparchive.org/static/images/2022/mobile-web/good-cwv.png
https://almanac.httparchive.org/static/images/2022/mobile-web/good-cwv.png

Loading performance metrics

Load time on the mobile web is measured in the same way that it is measured in any other

context, and despite the more difficult burdens that mobile devices face, that makes it harder

for them to load a site quickly. Research593 shows that mobile visitors are more impatient, and

actually expect and want the experience on a phone to be faster than it is on a larger device.

Time to First Byte (TTFB)

Time to First Byte594, which is often abbreviated as TTFB, is the measurement of the amount of

time that elapses from the start of the navigation to the first byte of data received in response

to the request. TTFB describes the responsiveness of the server and other network resources

that are needed to begin building a page.

TTFB is not a Core Web Vitals metric itself, but it has a direct impact on all loading performance

metrics, and thus, is often discussed as part of the optimization of all Core Web Vitals elements

and general site performance, especially Largest Contentful Paint.

As you can see above, there are only minor fluctuations in the percent of mobile sites that are

considered “good” from 2020 to 2022, going from 41% in 2020 down to 39% in 2021, then back

up to 40% in 2022.

Figure 15.11. Annual comparison of the percent of websites having good TTFB on mobile.

593. https://unbounce.com/page-speed-report/#:~:text=Young%20folks%20have,on%20a%20cellphone.
594. https://web.dev/ttfb/

Part II Chapter 15 : Mobile Web

2022 Web Almanac by HTTP Archive 505

https://unbounce.com/page-speed-report/#:~:text=Young%20folks%20have,on%20a%20cellphone.
https://web.dev/ttfb/
https://almanac.httparchive.org/static/images/2022/mobile-web/good-ttfb.png
https://almanac.httparchive.org/static/images/2022/mobile-web/good-ttfb.png

Largest Contentful Paint (LCP)

Largest Contentful Paint595, or LCP, is a metric that describes how long it takes for a website to

load the largest portion of the page content that is first displayed to a user with meaningful

content; it is often a function of the size and performance of a header image or design. The LCP

is important because it signals to a user when the page is ready to start consuming.

LCP performance is improving. In 2020, 43% of mobile sites had a LCP assessed as “good”. In

2021, this number improved to 45% of mobile sites. There was a significant jump in 2022 in

which 51% of mobile sites had good LCP performance. The Performance chapter explores some

possible explanations for why this may have happened.

Images

Images can contribute a lot to providing a good mobile experience, but they can also contribute

a lot to slow performance and bad loading experiences if they are not set up correctly. This

section explores how site owners are handling—or not handling—the performance impact of

images.

Figure 15.12. Annual comparison of the percent of websites having good LCP on mobile.

595. https://web.dev/lcp/

Part II Chapter 15 : Mobile Web

506 2022 Web Almanac by HTTP Archive

https://web.dev/lcp/
https://almanac.httparchive.org/static/images/2022/mobile-web/good-lcp.png
https://almanac.httparchive.org/static/images/2022/mobile-web/good-lcp.png

Appropriately sized images

Using images that are sized properly for a mobile device has long been one of the easiest ways

that anyone could improve mobile load time. In the early days of the mobile web, site owners

would often simply send the same images to desktop users as they would for mobile users,

because ultimately, mobile browsers would scale and resize the images to fit in the mobile

rendering of the page. Unfortunately, this didn’t work well, because it ended up requiring a lot

of extra data to send rich, high-quality images that were better suited for a desktop viewing

experience.

Given Google’s increased focus on rewarding good performance with their Core Web Vitals

program, you would expect that more sites would be optimizing their images. However, it’s

interesting to see that sites are actually having fewer optimized images over time. The figure

above shows that there is a decrease in the percentage of pages with properly sized images

since 2020596, when 59% of sites had properly sized images. But in 2022, that number is down to

only 54%.

Responsive images

Creating images that can be responsive to different screen sizes is a common way to handle

mobile image sizing. Using responsive images is a great way for websites to handle even the

Figure 15.13. Annual comparison of the percent of websites that have appropriately sized images.

596. https://almanac.httparchive.org/en/2020/mobile-web#images

Part II Chapter 15 : Mobile Web

2022 Web Almanac by HTTP Archive 507

https://almanac.httparchive.org/static/images/2022/mobile-web/appropriately-sized-images.png
https://almanac.httparchive.org/static/images/2022/mobile-web/appropriately-sized-images.png
https://almanac.httparchive.org/en/2020/mobile-web#images

most unique presentation scenarios, like viewing a website on a wide-screen TV, viewing a

website on a connected digital assistant, or even on a small feature phone or handheld gaming

system.

There are two main methods for embedding images on a screen: the img element, and the

more-expanded picture element. The picture element offers a few more possibilities to

include images based on certain criteria. The srcset attribute is available on both elements

and enables images to be conditionally included based on things like screen size and display

density. Some browsers may also take bandwidth into account when choosing an appropriate

image.

The picture element further expands on these capabilities to allow for art direction597, for

example specifying a 4:3 ratio image for mobile portrait screens, and a 16:9 for desktop or

landscape views. A further use is being able to specify different image formats, for example the

browser can load an AVIF image where supported, otherwise it will fall back to a WebP or PNG

image. Allowing the browser to make the sensible choice based on the conditions it’s operating

in usually means better performance and thus a better user experience.

The adoption of the picture element is at only 8% of mobile pages (up from 6% last year), but

srcset is at 35%. In 2021, the use of srcset was around 32%, so we have seen a growth of

about 3 percentage points.

Figure 15.14. Adoption of the picture element and srcset attribute.

597. https://developer.mozilla.org/docs/Learn/HTML/Multimedia_and_embedding/Responsive_images#art_direction

Part II Chapter 15 : Mobile Web

508 2022 Web Almanac by HTTP Archive

https://developer.mozilla.org/docs/Web/HTML/Element/picture
https://developer.mozilla.org/docs/Web/HTML/Element/picture
https://developer.mozilla.org/docs/Web/API/HTMLImageElement/srcset
https://developer.mozilla.org/docs/Web/API/HTMLImageElement/srcset
https://developer.mozilla.org/docs/Learn/HTML/Multimedia_and_embedding/Responsive_images#art_direction
https://almanac.httparchive.org/static/images/2022/mobile-web/picture-srcset.png
https://almanac.httparchive.org/static/images/2022/mobile-web/picture-srcset.png

Overall, it is great to see an increase in the use of responsive image techniques. The relatively

small uptake for picture , despite offering more flexibility in art direction and format fallback

support, could be down to the fact that it can require more work to produce, and is less likely to

be supported by default in popular CMS systems, like WordPress, which stick to the venerable

img tag (for now598).

Lazy-loading

Lazy-loading is the process of assigning different loading priority levels to elements of a web

page based on where they occur on a page. Without lazy loading, all of the elements and images

on a page will eventually be loaded, but lazy loading allows images to be deferred until it is clear

that they will be needed, based on where the user has scrolled to on the page. Lazy-loading is

especially relevant on mobile devices, because common responsive design patterns will almost

always stack content for a mobile rendering. The narrow nature of mobile screens ensures that

many stacked elements of the page are pushed far down below the fold, and may not be

immediately necessary—especially if all the user wants to do is click a link in the top navigation.

Lazy-loading eliminates that unnecessary data transfer, and the load time associated with it.

Native lazy-loading599 has been available since 2019, which allows browsers to do the complex

calculations in the most efficient way possible, and only requires that site owners tag images

with either lazy or eager . This simple tagging can be a great boon for page and site

performance, and can also save a lot of time and effort associated with maintaining your own

lazy-loading code. As long as you don’t inadvertently lazy-load your LCP image600 at the top of

the page, it is an easy win, but we found that only 25% of sites are currently using the

loading=lazy attribute for their images.

Layout stability

Layout stability is an important part of performance that has recently been pushed to the fore

with Google’s introduction of Core Web Vitals. Elements of Core Web Vitals are designed to

measure and assess the loading experience of a page, and layout stability of a page is an

important part of that. If a page is constantly moving and re-painting while it is being loaded,

Figure 15.15. Percent of mobile pages that contained images using loading="lazy" .

25%

598. https://github.com/WordPress/performance/issues/21
599. https://web.dev/browser-level-image-lazy-loading/
600. https://web.dev/lcp-lazy-loading/

Part II Chapter 15 : Mobile Web

2022 Web Almanac by HTTP Archive 509

https://github.com/WordPress/performance/issues/21
https://web.dev/browser-level-image-lazy-loading/
https://web.dev/lcp-lazy-loading/

this makes it seem like the page is taking much longer to load than it otherwise could if the

experience were more predictable and once things load, they remain exactly in the place where

they have loaded.

Since the loading order of content can be different under different conditions, or in different

browsers, building and planning around layout stability is a good way to ensure a smooth

loading experience regardless of the circumstances. The most relevant metrics for evaluating

layout stability is Cumulative Layout Shift (CLS) but other aspects of performance like image

sizing and lazy loading can also impact layout stability.

Cumulative Layout Shift (CLS)

Cumulative Layout Shift601, which is often abbreviated as CLS, is a representation of the stability

of a page while it is in use.

A low CLS represents a visually stable layout, which makes the experience less frustrating to

users. Pages with a high CLS often experience movement when images begin to load and text

must be rendered to fit, or wrap around the image. This can also happen when font files load

and the page has to be painted to accommodate differences caused by the font, sometimes

described as reflow, or when a large header image loads and moves all the content on the

page—occurrences that had been colloquially described as jank.

The screen size of the device requesting the page can have a significant impact on the way

elements are laid out, and how much they move when shift-causing elements are loaded.

CLS is measured as a score, and the highest instance of movement in any session window during

the page lifespan is what is measured. This changed602 in 2021, when CLS was previously

measured as the sum of all individual shift scores on a page. Google considers scores of 0.1 or

less as “good” and scores over 0.25 to be “poor”.

601. https://web.dev/cls/
602. https://web.dev/cls-web-tooling/

Part II Chapter 15 : Mobile Web

510 2022 Web Almanac by HTTP Archive

https://web.dev/cls/
https://web.dev/cls-web-tooling/

The percentage of websites with “good” CLS on mobile has improved significantly to 74%, up

from 62% last year.

Responsiveness

Responsiveness is always good in a mobile scenario, but it can have a layered meaning, In

general, technology that is responsive is good, and is reacting to cues that it is given in an

efficient and meaningful way. When we talk about mobile responsiveness in terms of design, we

are describing content that will respond and adjust its layout to accommodate the different

screen sizes of the devices that request it. In a more broad sense though, responsive also

indicates how quickly and efficiently a page responds to user interactions - so this type of

responsiveness is less about layout, and more about quick interaction. Having a site that is very

responsive is good because it creates an efficient user interaction, in which users feel

immediately acknowledged when they interact with the site. The metrics used to evaluate this

kind of responsiveness are First Input Delay (FID) and Interaction to Next Paint (INP), and

those will be covered in this section.

First Input Delay (FID)

First Input Delay603 (FID) describes the responsiveness of a site, especially related to how long it

Figure 15.16. Annual comparison of the percent of websites having good CLS on mobile.

603. https://web.dev/fid/

Part II Chapter 15 : Mobile Web

2022 Web Almanac by HTTP Archive 511

https://almanac.httparchive.org/static/images/2022/mobile-web/good-cls.png
https://almanac.httparchive.org/static/images/2022/mobile-web/good-cls.png
https://web.dev/fid/

takes for a site to respond after a user first clicks on a page element. A low FID is desirable,

especially on mobile web interactions, where the responsiveness of a mobile site should ideally

rival the responsiveness of a comparable native app, to make the interactions feel equally fluid

and satisfying. Google considers a site to have “good” FID if at least 75% of experiences are

under 100 ms.

There has been a consistent growth in the percent of mobile sites that have “good” FID in the

past three years, going from only 80% in 2020 to 90% in 2021, and reaching 92% in 2022.

Interaction to Next Paint (INP)

Interaction to Next Paint604 (INP) is an experimental metric from Google that is used to measure

responsiveness and response time on a page when a user interacts with it. A low INP is

desirable because it means that the page was able to respond quickly to user interactions

without substantial delays waiting for content to paint after it is requested. A “good” INP is 200

ms or less, and a poor one is anything over 500 ms. Eventually, INP could be added to the official

Core Web Vitals metrics, but for now it is still being tested to make sure that it is a reliable and

consistent metric that site owners will find useful.

Figure 15.17. Annual comparison of the percent of websites having good FID on mobile.

604. https://web.dev/inp/

Part II Chapter 15 : Mobile Web

512 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/mobile-web/good-fid.png
https://almanac.httparchive.org/static/images/2022/mobile-web/good-fid.png
https://web.dev/inp/

This is the first year that INP data is available to us, so we don’t have any historical context, but

what we see is that 55% of websites have good INP on mobile. This is especially interesting

because of how much worse the mobile web performs on INP compared to FID. If INP does end

up replacing FID as a Core Web Vital, responsiveness will become a much more prevalent issue.

Conclusion

In a comparison of data from 2020 and 2021 to 2022, there has been a lot of evolution in both

the use and expectations of the mobile web. Aspects of performance like layout stability used to

be considered optional, overly technical, or niche, have now become mainstream concerns for

site owners that focus on mobile and desktop alike. The added complexity of providing a good

user experience has come into higher relief for mobile devices, where it is confoundingly more

expected but also much harder.

The good news for those who care about the mobile web and its user experiences is that much

of the hard work of building sites that work well across all different devices is being offloaded

from individual site and CMS development teams to browsers. We see this happening with lazy-

loading, the srcset element for responsive images, and some other aspects of performance,

but we hope that this type of initiative will also be taken on by the browsers to help simplify

work in other ways as well. There are still many opportunities to improve mobile web

accessibility, interactivity across different types of phone functionality, and eventually maybe

even interplay with connected devices for things like casting, sharing, and other connected

home and IoT scenarios. Google and other search engines can also do more to explicitly

incentivize attention to mobile accessibility concerns to create a wide-spread positive impact

on the web.

Traffic and popularity statistics in this report are clear that mobile web is basically now just

synonymous with web. The expectation of mobile website interaction should be a default in

almost every scenario. This means that to move forward, site owners and the web community

will need to continue to raise consciousness of this reality with the less technical teams,

divisions, and groups that we work with. It is not enough to simply pay lip-service to the

concept of mobile-first design and development; these concepts need to continue to be

embraced and pushed when necessary. They also need to experience their own

growth—outside of the web scenario to larger elements of business planning, marketing,

Figure 15.18. Percent of websites that have good INP on mobile.

55%
Part II Chapter 15 : Mobile Web

2022 Web Almanac by HTTP Archive 513

strategy, and communication.

Author

Cindy Krum

@suzzicks Suzzicks https://mobilemoxie.com/

Cindy Krum is the CEO and Founder of MobileMoxie. She specializes in mobile

SEO, app SEO (ASO), and anticipating and explaining changes in Google before

they are announced.

Part II Chapter 15 : Mobile Web

514 2022 Web Almanac by HTTP Archive

https://twitter.com/suzzicks
https://github.com/Suzzicks
https://mobilemoxie.com/

Part II Chapter 16

Capabilities

Written by Michael Solati
Reviewed by Thomas Steiner and Christian Liebel
Analyzed and edited by Barry Pollard

Introduction

Compelling web experiences aren’t limited to basic browser capabilities; they can take

advantage of their underlying operating system. Web platform APIs expose these capabilities

that are the foundation for Progressive Web Apps (PWA)—web applications capable of

providing high-quality experiences like platform-specific apps.

In addition, some functionality on the web platform gives access to lower-level features such as

access to the file system605, geolocation606, access to the clipboard607, and even the ability to detect

gamepads608.

605. https://developer.mozilla.org/docs/Web/API/File_System_Access_API
606. https://developer.mozilla.org/docs/Web/API/Geolocation_API
607. https://developer.mozilla.org/docs/Web/API/Clipboard_API
608. https://developer.mozilla.org/docs/Web/API/Gamepad_API

Part II Chapter 16 : Capabilities

2022 Web Almanac by HTTP Archive 515

https://developer.mozilla.org/docs/Web/API/File_System_Access_API
https://developer.mozilla.org/docs/Web/API/Geolocation_API
https://developer.mozilla.org/docs/Web/API/Clipboard_API
https://developer.mozilla.org/docs/Web/API/Gamepad_API

Methodology

This chapter used the HTTP Archive’s public dataset of millions of pages. These pages were

archived as if they were visited on both desktop and mobile, as some sites will serve different

content based on what device is requesting the page.

The HTTP Archive’s crawler then parsed the source code for all of these pages to determine

which APIs were (potentially) used on the pages. For instance, regular expressions, such as

/navigator\.share\s*\(/g , test pages to see if in the concrete case the Web Share API609

is found in its source code.

This method does have two significant issues. First, it may underreport some APIs used as it can

not detect obfuscated code that may exist due to minification, for example, when navigator
was minified to n . Additionally, it may overreport occurrences of APIs because it does not

execute code to see if an API is actually used. Regardless of these limitations, we believe this

methodology should provide a sufficiently good overview of what capabilities are used on the

web.

Seventy-five total regular expressions for supported capabilities exist; view this source file610 to

see all the expressions used.

The usage data in this chapter is from a crawl in June 2022; you can view the raw data in the

Capabilities 2022 Results Sheet611.

This chapter will also compare API usage to last year’s usage; you can view the raw data from

the previous year in the Capabilities 2021 Results Sheet612.

Async Clipboard API

Our first API, the Async Clipboard API, allows read/write access to the system’s clipboard.

Note that the Async Clipboard API replaces the deprecated document.execCommand() API

to access the clipboard.

Write access

In order to write data into the clipboard, there are the writeText() and write() methods.

The writeText() method takes a String argument and returns a Promise, while write()

609. https://developer.mozilla.org/docs/Web/API/Web_Share_API
610. https://github.com/HTTPArchive/custom-metrics/blob/5d2f74fbdc580e76da5d1dad738fca8381429b9a/dist/fugu-apis.js
611. https://docs.google.com/spreadsheets/d/13S9FRj8OPRtoMPb94jFh6pPNz3lNS9yztIaorZYe288/edit?usp=sharing
612. https://docs.google.com/spreadsheets/d/1b4moteB9EiLYkH1Ln9qfi1tnU-E4N2UQ87uayWytDKw/edit#gid=2077755325

Part II Chapter 16 : Capabilities

516 2022 Web Almanac by HTTP Archive

https://developer.mozilla.org/docs/Web/API/Web_Share_API
https://github.com/HTTPArchive/custom-metrics/blob/5d2f74fbdc580e76da5d1dad738fca8381429b9a/dist/fugu-apis.js
https://docs.google.com/spreadsheets/d/13S9FRj8OPRtoMPb94jFh6pPNz3lNS9yztIaorZYe288/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1b4moteB9EiLYkH1Ln9qfi1tnU-E4N2UQ87uayWytDKw/edit#gid=2077755325
https://developer.mozilla.org/docs/Web/API/Clipboard_API
https://developer.mozilla.org/docs/Web/API/Clipboard/writeText
https://developer.mozilla.org/docs/Web/API/Clipboard/writeText
https://developer.mozilla.org/docs/Web/API/Clipboard/write
https://developer.mozilla.org/docs/Web/API/Clipboard/write

takes an array of ClipboardItem objects and also returns a Promise. ClipboardItem
objects can hold arbitrary data, such as images.

A list of the mandatory data types a browser must support by the Clipboards API specification

exists; see this list by the W3C613. Unfortunately, not all vendors support the complete list; check

browser-specific documentation when possible.

await navigator.clipboard.writeText("hello world");

const blob = new Blob(["hello world"], { type: "text/plain" });

await navigator.clipboard.write([

 new ClipboardItem({

 [blob.type]: blob,

 }),

]);

Read access

In order to read data from the clipboard, there are the readText() and read() methods.

Both methods return a Promise which will resolve with data from the clipboard. The

readText() method resolves as a String while read() resolves as an array of

ClipboardItem objects.

const item = await navigator.clipboard.readText();

const items = await navigator.clipboard.read();

To keep user data safe, the "clipboard-read" permission of the Permissions API614 must be

granted to read data from the clipboard.

Both read and write access to the clipboard is available on modern versions of Chrome, Edge,

and Safari. Firefox only supports writeText() .

613. https://www.w3.org/TR/clipboard-apis/#mandatory-data-types-x
614. https://developer.mozilla.org/docs/Web/API/Permissions_API

Part II Chapter 16 : Capabilities

2022 Web Almanac by HTTP Archive 517

https://developer.mozilla.org/docs/Web/API/ClipboardItem
https://developer.mozilla.org/docs/Web/API/ClipboardItem
https://www.w3.org/TR/clipboard-apis/#mandatory-data-types-x
https://developer.mozilla.org/docs/Web/API/Clipboard/readText
https://developer.mozilla.org/docs/Web/API/Clipboard/readText
https://developer.mozilla.org/docs/Web/API/Clipboard/read
https://developer.mozilla.org/docs/Web/API/Clipboard/read
https://developer.mozilla.org/docs/Web/API/Permissions_API

Growth of the Async Clipboard API

The Async Clipboard API saw growth in usage from 8.91% in 2021 to 10.10% in 2022 on

desktop. On mobile, there was also growth from 8.25% in 2021 to 9.27% in 2022. As a result,

this year, the Async Clipboard API was the most used API on both desktop and mobile, beating

the Web Share API (last year’s most used API).

Web Share API

The Web Share API invokes the platform-specific sharing mechanism of the device, allowing data

such as text, a URL, or files from a web application to be shared with any other application, such

as mail clients, messaging applications, and more.

The method called to share data is navigator.share() . The navigator.share() method

accepts an object containing the data to share and returns a Promise. Not every file type can be

shared, though, and the navigator.canShare() method can test a data object to see if the

browser can share it. You can see the list of shareable file types615 on MDN.

After calling navigator.share() , the browser will open a platform-specific sheet where

users select which application to share the data with.

Figure 16.1. Usage of the Async Clipboard API from 2021 to 2022 on desktop and mobile.

615. https://developer.mozilla.org/docs/Web/API/Navigator/share#shareable_file_types

Part II Chapter 16 : Capabilities

518 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/capabilities/Async-Clipboard-API-Usage.png
https://almanac.httparchive.org/static/images/2022/capabilities/Async-Clipboard-API-Usage.png
https://developer.mozilla.org/docs/Web/API/Web_Share_API
https://developer.mozilla.org/docs/Web/API/Navigator/share
https://developer.mozilla.org/docs/Web/API/Navigator/share
https://developer.mozilla.org/docs/Web/API/Navigator/canShare
https://developer.mozilla.org/docs/Web/API/Navigator/canShare
https://developer.mozilla.org/docs/Web/API/Navigator/share#shareable_file_types

Additionally, the Web Share API can only be triggered by a user’s interaction with the page,

such as a button click; the Web Share API cannot be called arbitrarily by executed code.

const data = {

 url: "https://almanac.httparchive.org/en/2022/capabilities",

};

if (navigator.canShare(data)) {

 try {

 await navigator.share(data);

 catch (err) {

 console.error(err.name, err.message);

 }

}

The Web Share API is available on modern versions of Chrome, Edge, and Safari. For Chrome,

though, it is only supported on Windows and ChromeOS.

Growth of the Web Share API

Figure 16.2. Usage of the Web Share API from 2021 to 2022 on desktop and mobile.

Part II Chapter 16 : Capabilities

2022 Web Almanac by HTTP Archive 519

https://almanac.httparchive.org/static/images/2022/capabilities/Web-Share-API-Usage.png
https://almanac.httparchive.org/static/images/2022/capabilities/Web-Share-API-Usage.png

The Web Share API shrunk in usage from 9.00% in 2021 to 8.84% in 2022 on desktop. On

mobile, usage shrunk from 8.58% in 2021 to 8.36% in 2022. As a result, this year, the Web

Share API was the second most used API on both desktop and mobile, falling behind the Async

Clipboard API—last year’s second most used API.

On many sites, you can find the Web Share API in use. For example, social media platforms,

documentation sites, and others use it as a great way to share content. Some examples where

you can find the API in use include web.dev616 and twitter.com617.

Add to Home Screen

The ability to add a web application to a device’s home screen is a feature we didn’t look at in

last year’s Capabilities report. To calculate how many sites have this functionality, pages were

tested to see if they had a listener for the beforeinstallprompt event.

Note that the beforeinstallprompt event is a Chromium-only API and is currently

incubating within the WICG618.

The beforeinstallprompt event triggers right before a user is about to be prompted to

“install” a web app. The usage of an event listener for the beforeinstallprompt event is not

required for web apps to be added to a device’s home screen, so it is safe to assume that the

actual usage is much higher. However, this methodology will allow us to get an idea of how

popular of a feature it is.

The ability to add an application to the home screen is a crucial feature of PWAs. To use this

feature, web applications must meet the following criteria619:

• The web app must not already be installed.

• The user must have spent at least 30 seconds viewing the page at any time.

• The user must have clicked or tapped at least once on the page at any time.

• The web app must be served over HTTPS.

Figure 16.3. Sharing a Twitter profile using the Web Share API.

Sharing a Twitter profile using the Web Share API.

616. https://web.dev/
617. https://twitter.com/
618. https://wicg.github.io/manifest-incubations/index.html#installation-prompts
619. https://web.dev/install-criteria/#criteria

Part II Chapter 16 : Capabilities

520 2022 Web Almanac by HTTP Archive

https://web.dev/
https://twitter.com/
https://almanac.httparchive.org/static/images/2022/capabilities/Web-Share-API.webp
https://almanac.httparchive.org/static/images/2022/capabilities/Web-Share-API.webp
https://developer.mozilla.org/docs/Web/API/Window/beforeinstallprompt_event
https://developer.mozilla.org/docs/Web/API/Window/beforeinstallprompt_event
https://wicg.github.io/manifest-incubations/index.html#installation-prompts
https://web.dev/install-criteria/#criteria

• The web app must include a web app manifest620 with:

• short_name or name .

• icons (must include a 192×192px and a 512×512px icon).

• start_url .

• display (must be one of fullscreen , standalone , or minimal-
ui).

• prefer_related_applications (must not be present, or be
false).

• The web app must register a service worker with a fetch handler.

Installed applications can appear in Start menus, desktops, home screens, the Applications

folder, when searching for applications on a device, content sharing sheets, and more.

The ability to add to the home screen is only available on modern versions of Chrome, Edge, and

Safari on iOS and iPadOS.

Usage of Add to Home Screen

As mentioned, the add to home screen capability was not measured last year. However, for

posterity and detailed reporting, the beforeinstallprompt event was used on 8.56% of

desktop pages and 7.71% of mobile pages, making it the third most used capability on desktop

and mobile.

By taking advantage of the beforeinstallprompt event, developers can provide a

customized experience in how users install their web application. One example is YouTube TV,

which invites users to install their application to access it more quickly and easily.

Figure 16.4. Usage of Add to Home Screen on mobile.

7.71%

620. https://developer.mozilla.org/docs/Web/Manifest

Part II Chapter 16 : Capabilities

2022 Web Almanac by HTTP Archive 521

https://developer.mozilla.org/docs/Web/Manifest

Media Session API

The Media Session API allows developers to create custom media notifications for audio or video

content on the web. The API includes action handlers that browsers can use to access media

control on keyboards, headsets, and the software controls on a device’s notification area and

lock screens. The Media Session API empowers users to know and control what’s playing on a

web page without needing to be actively viewing said page.

When a page plays audio or video content, users get a media notification that appears in their

mobile device’s notification tray or on their desktop’s media hub. Browsers will try to show a

title and an icon, but the Media Session API allows the notification to be customized with rich

media metadata, such as the title, artist name, album name, and album artwork.

navigator.mediaSession.metadata = new MediaMetadata({

 title: "Creep",

 artist: "Radiohead",

 album: "Pablo Honey",

 artwork: [

 {

 src: "https://via.placeholder.com/96",

 sizes: "96x96",

 type: "image/png",

 },

 {

 src: "https://via.placeholder.com/128",

 sizes: "128x128",

 type: "image/png",

 },

 {

 src: "https://via.placeholder.com/192",

 sizes: "192x192",

Figure 16.5. Installing YouTube TV from an in app prompt, powered by the
beforeinstallprompt event.

Installing YouTube TV from an in app prompt, powered by the beforeinstallprompt event.

Part II Chapter 16 : Capabilities

522 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/capabilities/Add-to-Home-Screen.webp
https://almanac.httparchive.org/static/images/2022/capabilities/Add-to-Home-Screen.webp
https://developer.mozilla.org/docs/Web/API/Media_Session_API

 type: "image/png",

 },

 {

 src: "https://via.placeholder.com/256",

 sizes: "256x256",

 type: "image/png",

 },

 {

 src: "https://via.placeholder.com/384",

 sizes: "384x384",

 type: "image/png",

 },

 {

 src: "https://via.placeholder.com/512",

 sizes: "512x512",

 type: "image/png",

 },

],

});

The Media Session API is available on modern versions of Chrome, Edge, Firefox, and Safari.

Usage of the Media Session API

The Media Session API was not measured last year. In its first year of tracking, the API was used

on 8.37% of desktop pages and 7.41% of mobile pages, making it the fourth most used

capability on desktop and mobile.

Web applications such as YouTube, YouTube Music, Spotify, and others take advantage of the

Media Session API and provide rich controls for the video or audio played.

Figure 16.6. Usage of Media Session API on mobile.

7.41%

Part II Chapter 16 : Capabilities

2022 Web Almanac by HTTP Archive 523

For a deeper dive into video usage on the web, check out the Media chapter.

Device Memory API

A device’s capabilities depend on a few things, like the network, the CPU core count, and the

amount of memory available. The Device Memory API provides insight into the memory available

by providing the read-only property deviceMemory on the Navigator interface. The

property returns an approximate amount of device memory in gigabytes as a floating point

number.

The value returned is imprecise, protecting the user’s privacy. It’s calculated by rounding down

to the nearest power of 2, then dividing that number by 1,024. The number is also clamped

within an upper and lower bound. So you can expect the numbers: 0.25 , 0.5 , 1 , 2 , 4 , and

8 (gigabytes).

const memory = navigator.deviceMemory;

console.log('This device has at least ', memory, 'GiB of RAM.');

The Device Memory API is only available on modern versions of Chrome and Edge.

Figure 16.7. Accessing controls and information for YouTube Music via the Window’s Taskbar.

Part II Chapter 16 : Capabilities

524 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/capabilities/Media-Session-API.png
https://almanac.httparchive.org/static/images/2022/capabilities/Media-Session-API.png
https://developer.mozilla.org/docs/Web/API/Device_Memory_API

Usage of the Device Memory API

The Device Memory API was not measured last year. In its first year of tracking, the API was

used on 6.27% of desktop pages and 5.76% of mobile pages, making it the fifth most used

capability on desktop and mobile.

For the release of Facebook’s 2019 redesign, FB5, they actively integrated adaptive loading

into this new version. They did this by adapting based on users’ actual hardware, changing what

loaded and what ran based on what users were using. For example, on the desktop, Facebook

defined buckets of users based on CPU cores (navigator.hardwareConcurrency) and

device memory (navigator.deviceMemory) available.

Check out this video621 from Chrome Dev Summit 2019, starting at 24:03, where Nate Schloss

shares how Facebook handles adaptive loading using features such as the Device Memory API.

Service Worker API

Service workers are one of the core components of Progressive Web Apps. They act as a client-

side proxy that puts developers in control of the system’s cache and how to respond to resource

requests. By pre-caching essential resources, developers can eliminate the dependence on the

network, ensuring instant and reliable experiences.

In addition to caching resources, service workers can update assets from the server, allow for

push notifications, and allow access to the background and periodic background sync APIs.

While service workers have become widely adopted and supported by major browsers, not all

features of service workers are available on all browsers. An example of a currently

unsupported feature is that of the Push API on Safari. Safari will support the Push API in the

upcoming release of macOS Ventura622 in 2022 and iOS 16623 and iPadOS 16 in 2023.

The Service Worker API is available on modern versions of Chrome, Edge, Firefox, and Safari.

Figure 16.8. Usage of Device Memory API on mobile.

5.76%

621. https://www.youtube.com/watch?v=puUPpVrIRkc&t=1443s
622. https://www.apple.com/macos/macos-ventura-preview/features/
623. https://www.apple.com/ios/ios-16/features/

Part II Chapter 16 : Capabilities

2022 Web Almanac by HTTP Archive 525

https://developer.mozilla.org/docs/Web/API/Navigator/hardwareConcurrency
https://developer.mozilla.org/docs/Web/API/Navigator/hardwareConcurrency
https://www.youtube.com/watch?v=puUPpVrIRkc&t=1443s
https://developer.mozilla.org/docs/Web/API/Service_Worker_API
https://www.apple.com/macos/macos-ventura-preview/features/
https://www.apple.com/ios/ios-16/features/

Growth of the Service Worker API

The Service Worker API was not measured in last year’s Capabilities chapter. However, using

data from the previous year’s PWA chapter, the API grew in usage from 3.05% to 4.17% on

desktop and 3.22% to 3.85% on mobile pages, making it the sixth most used capability on

desktop and the seventh most used mobile.

Note that how the service worker usage in the PWA chapter is measured differs from how the

Capabilities chapter measures it. Additionally, a bug in the data pipeline for last year’s PWA

chapter was found, resulting in an undercounting of service worker usage.

For a deeper dive into service worker usage on the web, check out the PWA chapter of the

2022 Web Almanac.

Gamepad API

The Gamepad API is how web applications respond to input from gamepads and other game

controllers. This API has three interfaces; one that represents the controller connected to the

device, one that represents buttons on the connected controller, and finally, one that is for

events fired when a gamepad is connected or disconnected.

Figure 16.9. Usage of the Service Worker API from 2021 to 2022 on desktop and mobile.

Part II Chapter 16 : Capabilities

526 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/capabilities/Service-Worker-API-Usage.png
https://almanac.httparchive.org/static/images/2022/capabilities/Service-Worker-API-Usage.png
http://127.0.0.1:8080/en/2021/pwa#service-workers-usage
http://127.0.0.1:8080/en/2022/pwa#service-workers
https://developer.mozilla.org/docs/Web/API/Gamepad_API

window.addEventListener("gamepadconnected", (e) => {

 const gp = navigator.getGamepads()[e.gamepad.index];

 console.log(`Controller connected at index ${gp.index}`);

});

The Gamepad API is available on modern versions of Chrome, Edge, Firefox, and Safari.

Growth of the Gamepad API

The Gamepad API shrunk in usage from 4.39% in 2021 to 4.12% in 2022 on desktop. On

mobile, use shrunk from 5.10% in 2021 to 4.65% in 2022. As a result, this year, the Gamepad

API was the seventh most used capability on desktop and the sixth most used mobile.

Web applications such as Google’s Stadia, NVIDIA’s GeForce Now, and Microsoft’s Xbox Cloud

Gaming provide gaming experiences that run on the cloud comparable to the experience of

running games on local devices or a gaming console. Thanks to the Gamepad API, these web

applications allow users to use traditional console game controllers rather than just a keyboard

and mouse.

Figure 16.10. Usage of the Gamepad API from 2021 to 2022 on desktop and mobile.

Part II Chapter 16 : Capabilities

2022 Web Almanac by HTTP Archive 527

https://almanac.httparchive.org/static/images/2022/capabilities/Gamepad-API-Usage.png
https://almanac.httparchive.org/static/images/2022/capabilities/Gamepad-API-Usage.png

Push API

The Push API allows web applications to receive messages from a server regardless of whether

the application was in the foreground. Developers can send asynchronous notifications and

updates to users who opt in, giving them meaningful updates and a nudge to reengage with an

application.

Web applications must also have a service worker to receive push notifications from a server.

From within the service worker, push notifications can be subscribed to using the

PushManager.subscribe() method.

The Push API is available on modern versions of Chrome, Edge, and Firefox.

Usage of the Push API

The Push API was not measured last year. In its first year of tracking, the API was used on 2.03%

of desktop pages and 1.86% of mobile pages, making it the eighth most used capability on

desktop and mobile.

Project Fugu

Many features users expect to belong to platform-specific applications also exist on the web.

However, thanks to the Capabilities Project, known by many as Project Fugu, these features

exist on the web. Project Fugu is a cross-company effort to bring feature parity to web

applications, considering what iOS, Android, or desktop apps can do. Project Fugu works on

exposing platform-specific capabilities to the web while maintaining user security, privacy,

trust, and the web’s other core tenets.

Project Fugu comprises Microsoft, Intel, Samsung, Google, and many other groups and

Figure 16.11. Connecting an Xbox controller to Google Stadia in the Chrome browser.

Connecting an Xbox controller to Google Stadia in the Chrome browser.

Figure 16.12. Usage of Push API on mobile.

1.86%

Part II Chapter 16 : Capabilities

528 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/capabilities/Gamepad-API.webp
https://almanac.httparchive.org/static/images/2022/capabilities/Gamepad-API.webp
https://developer.mozilla.org/docs/Web/API/Push_API
https://developer.mozilla.org/docs/Web/API/PushManager/subscribe
https://developer.mozilla.org/docs/Web/API/PushManager/subscribe

individuals.

Check out this post624 on the Chrome Developers blog to learn more about the Capabilities

Project.

Conclusion

Capabilities unlock new possibilities and functionality for developers to take advantage of on

the web. This chapter shared eight of the most popular web platform APIs currently being used

on the web. It also showcased some of these capabilities used in different web applications. The

beauty of the web is that it can use these platform-based functionalities without needing to

(necessarily) be installed onto a device or additional libraries and plugins.

Some exciting experiences that utilize the web’s capabilities include What Web Can Do

Today?625 (WWCDT) and Discourse626. WWCDT, which uses 38 of the capabilities we track,

showcases many Web APIs with a live demo of each API. Discourse provides communities with

web forums and uses 14 of the capabilities we track, such as the Badging API, so users can see

the number of unread notifications they have.

The Capabilities Project, Project Fugu, allows applications to migrate to the web, removing

some barriers associated with platform-specific applications. No need to write “native” code, no

need to worry about users having access to the latest updates, and no need to get users to

search for and download from your application in app stores. The web, and its capabilities, open

up all new possibilities in building compelling experiences for users.

Author

Michael Solati

@MichaelSolati MichaelSolati https://michaelsolati.com

Michael is a Developer Advocate at Amplication, focusing on helping developers

build APIs and drink IPAs. Additionally, he is a Web GDE and has found his love in

creating compelling experiences on the web and the voodoo ways of the web…

624. https://developer.chrome.com/blog/fugu-status/
625. https://whatwebcando.today/
626. https://www.discourse.org/

Part II Chapter 16 : Capabilities

2022 Web Almanac by HTTP Archive 529

https://developer.chrome.com/blog/fugu-status/
https://whatwebcando.today/
https://whatwebcando.today/
https://www.discourse.org/
https://twitter.com/MichaelSolati
https://github.com/MichaelSolati
https://michaelsolati.com/

530 2022 Web Almanac by HTTP Archive

Part II Chapter 17

PWA

Written by Diego Gonzalez
Reviewed by Aaron Gustafson, Adriana Jara, Maxim Salnikov, Kai Hollberg, and Beth Pan
Analyzed by Beth Pan
Edited by Siwin Lo and Barry Pollard

Introduction

In the early days of Progressive Web Apps, there were two key features that harnessed the

promise of an advanced modern web application: offline support and a direct icon on the home

screen of the device.

These two concepts were enabled after installing a PWA, a process that generally began by

tapping on an “ambient badge” that would appear on the browser’s URL bar. This badge would

prompt the user to install the website. Mobile browsers such as Samsung Internet and Mozilla

Firefox, were among the first ones to explicitly support this behavior, commonly known as “Add

to home screen” (A2HS)627.

Five years ago, this was a radical idea. A website would be able to launch directly from the home

screen, listed alongside other applications a user had installed on their device. This was the

627. https://developer.mozilla.org/docs/Web/Progressive_web_apps/Add_to_home_screen

Part II Chapter 17 : PWA

2022 Web Almanac by HTTP Archive 531

https://developer.mozilla.org/docs/Web/Progressive_web_apps/Add_to_home_screen
https://developer.mozilla.org/docs/Web/Progressive_web_apps/Add_to_home_screen

start of progress made towards reducing the gap between capabilities of web apps and OS-

specific experiences.

The A2HS scenario has evolved into web apps that can be fully installed and deeply integrated

into the host OS, in both mobile and desktop contexts. These past 12 months have seen

browsers take important steps towards making sure that PWAs have a tight integration with

desktop platforms, and many of the new additions to this year’s almanac reflect these changes.

This is the state of PWAs in 2022.

Note: As a set of web technologies, PWAs are not isolated from the rest of the web platform.

While there is a chapter dedicated to Capabilities, this year we have investigated the

intersection of some of these new advanced capabilities when used inside a PWA.

Service workers

Service workers628 is one of the core technologies of PWAs and the enabler of offline apps,

getting push notifications, and doing background processing. They serve as the base for most of

the advanced experiences we expect from applications. They are also being used to define data

updates and for upcoming modern functionality like widgets based on PWA technologies629.

While there isn’t parity between major browsers when it comes to service worker feature

support, Webkit adding support for push notifications630 was a huge milestone. Earlier this year

it was announced that Apple had made changes631 to their desktop platform to support the

relevant parts of the Push API632, Notifications API633 and that service workers634 would enable

Web Push. They also announced the feature would be coming to their mobile platforms in

2023.

Service worker usage

For comparison reasons, we have run the same queries as last year, which allows us to try to

make sense of the evolution of service worker usage. Last year’s chapter gave the explanation

of why it isn’t trivial to find out actual usage of service worker635, and that is just as true this year.

Looking at two of the measures:

628. https://developer.mozilla.org/docs/Web/API/Service_Worker_API
629. https://github.com/aarongustafson/pwa-widgets#rich-widgets
630. https://caniuse.com/push-api
631. https://webkit.org/blog/12945/meet-web-push/
632. https://developer.mozilla.org/docs/Web/API/Push_API
633. https://developer.mozilla.org/docs/Web/API/Notifications_API
634. https://developer.mozilla.org/docs/Web/API/Service_Worker_API
635. https://almanac.httparchive.org/en/2021/pwa#service-workers-usage

Part II Chapter 17 : PWA

532 2022 Web Almanac by HTTP Archive

https://developer.mozilla.org/docs/Web/API/Service_Worker_API
https://github.com/aarongustafson/pwa-widgets#rich-widgets
https://caniuse.com/push-api
https://webkit.org/blog/12945/meet-web-push/
https://developer.mozilla.org/docs/Web/API/Push_API
https://developer.mozilla.org/docs/Web/API/Notifications_API
https://developer.mozilla.org/docs/Web/API/Service_Worker_API
https://almanac.httparchive.org/en/2021/pwa#service-workers-usage

• Lighthouse detects a 1.6% (mobile) and 1.7% (desktop) of all websites employ a

service worker. We expect this is lower than the real-world percentage due to

additional checks636 that Lighthouse takes into consideration.

• Following the same metrics introduced last year637, usage of a Service Worker in

websites comes up to 1.63% on desktop and 1.81% on mobile.

There hasn’t been a noticeable change for service worker controlled pages in the top 1,000

sites as well, with only a slight decrease in desktop and even smaller increase in mobile

properties. But there was an increase in all other categories. If we follow the reasoning from

last year638—where we postulated that bigger websites adopted the advanced technologies

faster—then seeing more growth in other categories makes sense. It would seem smaller

companies and developers have learned and adopted the technology shared from case studies

and examples from the companies with more traffic.

Service worker events

A service worker acts as a proxy server that sits between the web app, the browser and the

network. To install a service worker it must be fetched and registered. If this is successful, the

Figure 17.1. Service worker controlled pages by rank.

636. https://web.dev/service-worker
637. https://github.com/HTTPArchive/legacy.httparchive.org/blob/master/custom_metrics/pwa.js
638. https://almanac.httparchive.org/en/2021/pwa#fig-2

Part II Chapter 17 : PWA

2022 Web Almanac by HTTP Archive 533

https://web.dev/service-worker
https://github.com/HTTPArchive/legacy.httparchive.org/blob/master/custom_metrics/pwa.js
https://almanac.httparchive.org/static/images/2022/pwa/sw-controlled-pages-rank.png
https://almanac.httparchive.org/static/images/2022/pwa/sw-controlled-pages-rank.png
https://almanac.httparchive.org/en/2021/pwa#fig-2
https://almanac.httparchive.org/en/2021/pwa#fig-2

service worker is executed in a special worker container639 that runs off the main thread and has

no DOM access. This is when events can be processed.

The previous chart displays information on the most used service worker events. Each one of

these events can be categorized into:

• Lifecycle events

• Notification-related events

• Background processing events

Lifecycle events

install and activate are lifecycle events. It is common practice to create a cache of

assets that will allow running the app offline when installing. Activation is generally used to

clean up old caches associated with the previous service worker.

Figure 17.2. Most used service worker events.

639. https://developer.mozilla.org/docs/Web/API/ServiceWorkerGlobalScope

Part II Chapter 17 : PWA

534 2022 Web Almanac by HTTP Archive

https://developer.mozilla.org/docs/Web/API/ServiceWorkerGlobalScope
https://almanac.httparchive.org/static/images/2022/pwa/most-used-sw-events.png
https://almanac.httparchive.org/static/images/2022/pwa/most-used-sw-events.png

The service worker needs to be active in order to receive events like fetch and push. This makes

them the cornerstone of service workers, and hence the 63% usage on desktop and 61% on

mobile for install , and the same for activate .

The remaining ~40% of sites with service worker might not be actively using these events, as

they can be using service worker for notifications or utilizing techniques to cache requests

made only when the site is running, also known as runtime caching640.

While these are still the most used events, the increase of other types of events being used

leads us to speculate that there is an increased number of service workers not (only) being used

for pre-caching as their main task.

Notification-related events

Push notification events come next in most used service worker methods.

• notificationclick comes up to 57% (▲11% over last year’s data) on desktop

and 51% (▲5%) on mobile.

• push 56% (▲12%) on desktop and 50% (▲5%) on mobile.

• notificationclose is now at 15% (▲9%) on desktop and 16% (▲10%) on

mobile.

A couple of takeaways here is that momentum continues to grow this year for PWAs on

desktop, and push notifications is not an exception. Usage of related events for notifications has

gone up around 11%. Many tweaks and fixes have been worked on in different platforms to

make sure that these pieces of UX feel completely integrated with the host OS. We expect

Figure 17.3. Service worker events that are install events on mobile.

61%

Figure 17.4. Service worker events that are notificationclick events on desktop.

57%

640. https://web.dev/runtime-caching-with-workbox/

Part II Chapter 17 : PWA

2022 Web Almanac by HTTP Archive 535

https://web.dev/runtime-caching-with-workbox/

these numbers to continue growing, following the newly announced support for Web Push on

Webkit641. This is a feature that has being requested by many developers for a long time and

finally having support on macOS—and hopefully soon iOS devices—can encourage developers

to use the API.

Background processing events

The remaining events in the chart represent background processing events:

• fetch , which occurs when a request is sent to the server, can be used to intercept

said request and respond with custom or cached assets, enabling offline support for

our PWAs. Fetch usage is 49% on desktop and 50% on mobile.

• sync , which fires when the UA believes the user has connectivity, has a usage of

6% on desktop and 5% on mobile.

• periodicsync , which allows web applications to periodically synchronize data in

the background, is currently at 0.01% on both desktop and mobile platforms. It

should be noted that periodicsync is limited to a max of once every 12 hours.

This can be artificially suppressing usage of the feature.

Figure 17.5. Service worker events that are fetch events on desktop.

49%

641. https://webkit.org/blog/12945/meet-web-push/

Part II Chapter 17 : PWA

536 2022 Web Almanac by HTTP Archive

https://webkit.org/blog/12945/meet-web-push/
https://webkit.org/blog/12945/meet-web-push/

Other popular SW features

Similar to the stats of last year642, the skipWaiting method that is used to immediately

activate the service worker is still very popular among developers, being present on 60% of

desktop and 59% of mobile web apps.

These are the top most used service worker objects:

Figure 17.6. Usage of skipWaiting() method.

642. https://almanac.httparchive.org/en/2021/pwa#other-popular-service-worker-features

Part II Chapter 17 : PWA

2022 Web Almanac by HTTP Archive 537

https://almanac.httparchive.org/static/images/2022/pwa/usage-skip-waiting.png
https://almanac.httparchive.org/static/images/2022/pwa/usage-skip-waiting.png
https://almanac.httparchive.org/en/2021/pwa#other-popular-service-worker-features
https://developer.mozilla.org/docs/Web/API/ServiceWorkerGlobalScope/skipWaiting
https://developer.mozilla.org/docs/Web/API/ServiceWorkerGlobalScope/skipWaiting

And these are the most used methods:

Figure 17.7. Most used service worker objects.

Figure 17.8. Most used service worker object methods.

Part II Chapter 17 : PWA

538 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/pwa/most-used-sw-objects.png
https://almanac.httparchive.org/static/images/2022/pwa/most-used-sw-objects.png
https://almanac.httparchive.org/static/images/2022/pwa/most-used-sw-objects-methods.png
https://almanac.httparchive.org/static/images/2022/pwa/most-used-sw-objects-methods.png

Web App Manifest

The Web App Manifest file is a JSON file that contains information about the application itself.

The manifest file is the other main core technology that defines PWAs. Among the data that is

present in the key-value pairs is information relevant to display, promote and integrate the app

into the host OS.

Keeping the web app’s manifest fully authored is essential to take advantage of advanced

discoverability through online repositories, submissions to application stores, and more

recently, a way to tap into advanced capabilities like share target and file handling for your app.

Cutting edge work to enable Widgets based on PWA technology643 is also being rooted in the

manifest, proving the versatility of the file itself for advanced platform integration even further.

For most cases—95% in desktop and 94% in mobile—the manifests we found are JSON

parsable. This indicates that almost all web apps that use the manifest are correctly formed.

This does not indicate completeness or minimum availability of certain fields that would

contribute to the installation of the web app. As a matter of fact, there is currently no required

properties for the Manifest file. Am empty file technically is a valid Manifest file.

The manifest file plays a key part in signaling to the browser to prompt for installation, though

the way the prompt is triggered varies with different browsers644, there’s always a subset of the

manifest file involved.

Below are the usage numbers of manifest file alongside service worker. These two used in

conjunction generally imply installability.

Figure 17.9. Percent of manifest files parsable on desktop.

95%

643. https://github.com/aarongustafson/pwa-widgets#how-widgets-are-represented-in-these-apis
644. https://web.dev/installable-manifest/#in-other-browsers

Part II Chapter 17 : PWA

2022 Web Almanac by HTTP Archive 539

https://github.com/aarongustafson/pwa-widgets#how-widgets-are-represented-in-these-apis
https://web.dev/installable-manifest/#in-other-browsers

The data tells us that web applications are around 5 times more likely to have a manifest file

than a service worker. A contributing factor is that many platforms, such as Content

Management Systems (CMSs), auto-generate manifest files for websites.

Only a small percentage of websites—0.8% on both desktop and mobile—implement both

service worker and manifest files, which means less than 1% of websites can be installed on

devices like traditional apps.

For this chapter we are mostly interested in sites that have both a service worker and a

manifest so–unless otherwise noted—the manifest data present in this chapter are for PWA

sites.

Figure 17.10. Service Worker and Manifest usage.

Part II Chapter 17 : PWA

540 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/pwa/sw-manifest-usage.png
https://almanac.httparchive.org/static/images/2022/pwa/sw-manifest-usage.png

Manifest properties

Looking at top properties used in manifest files this year as compared to last year, there is no

significant change.

Note that the gcm_sender_id , is not a standardized property. It is used by the Google

Developer Console to identify an app and enabled older versions of Chrome to implement web

push, which relied on the GCM service.

Most PWAs, 80% for desktop and 79% for mobile do not define a preferred orientation. When

set, the most frequently used value is “portrait,” with 13% on desktop and 15% on mobile web

sites defining that value on their manifest.

display property

Digging into the display property more, we see the following values:

Figure 17.11. Top PWA manifest properties.

Part II Chapter 17 : PWA

2022 Web Almanac by HTTP Archive 541

https://almanac.httparchive.org/static/images/2022/pwa/top-pwa-manifest-props.png
https://almanac.httparchive.org/static/images/2022/pwa/top-pwa-manifest-props.png

display: standalone mode is the most common display mode, used by almost 3/4 of

websites that define a display mode. It’s also one of the display modes that enables an app to be

installable.

Figure 17.12. PWA manifest display values.

Part II Chapter 17 : PWA

542 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/pwa/display-values.png
https://almanac.httparchive.org/static/images/2022/pwa/display-values.png

icons property

PWAs need to generate different icon sizes to accommodate the range of surfaces where the

app can be advertised and placed. Many tools exist to generate the plethora of icons needed for

different desktop and mobile environments. The 2 most common icon sizes present in manifest

files are 192x192 and 512x512 . Both sizes appear in around 70% of the manifest files

analyzed.

Installation and discoverability properties

A web app manifest file can contain data that is useful in describing of the application. These

properties can be used by stores or other distribution mechanisms to promote the application.

An increased growth of rich browser-based installation dialogs645 is also utilizing these fields

more prominently. Relevant fields, which can be found as part of the Application Information

supplement to the Manifest file are listed below:

• description : This property exists in 36% of desktop and 34% of mobile web app

manifests. The description is important since it explains what the application does.

It’s commonly used to provide information about the app for a store. Currently

around a third of installable PWAs would offer this information.

Figure 17.13. Top PWA manifest icon sizes.

645. https://developer.chrome.com/blog/richer-pwa-installation/

Part II Chapter 17 : PWA

2022 Web Almanac by HTTP Archive 543

https://almanac.httparchive.org/static/images/2022/pwa/top-icon-sizes.png
https://almanac.httparchive.org/static/images/2022/pwa/top-icon-sizes.png
https://developer.chrome.com/blog/richer-pwa-installation/

• screenshots : This property provides the URLs of one or more screenshots for

use in app stores and in-browser install prompts. PWAs with manifests that take

advantage of this feature total 1.12% for desktop and 1.19% for mobiles devices.

• categories : Used as hints for catalog organization.

• iarc_rating_id : It’s a string that represents the IARC certification code646 of the

web app. 0.05% of desktop and mobile apps utilize this field to advertise the rating

of their app or game.

Manifest categories

Let’s dig into the categories little more.

And we will also show the same data for all websites, rather than just those with a service

worker which we are using as our definition of “PWA sites”:

Figure 17.14. Top PWA manifest categories.

646. https://www.globalratings.com/how-iarc-works.aspx

Part II Chapter 17 : PWA

544 2022 Web Almanac by HTTP Archive

https://www.globalratings.com/how-iarc-works.aspx
https://almanac.httparchive.org/static/images/2022/pwa/top-pwa-manifest-cats.png
https://almanac.httparchive.org/static/images/2022/pwa/top-pwa-manifest-cats.png

The top categories for both websites and PWAs remain the same, yet each is slightly different.

Top categories are shopping, news, and business.

Advanced capabilities

The manifest file also allows for the activation of modern platform capabilities. These

capabilities can allow for advanced windowing capabilities or registration of behaviors in the

host OS. Many of these capabilities have landed very recently into the platform, and therefore,

we hope this data register an inception of many of these new APIs.

As these are lesser-use, more advanced, capabilities they do not show on our previous graph of

the top manifest properties, but are worth looking at to see their usage too:

• shortcuts : 6.2% of desktop and 4.3% of mobile PWAs are using shortcuts to

deep link into the app.

• file_handlers : allows an installed PWA to register itself as a handler for a

specific file extension. Only 0.01% of desktop and 0.02% of mobile are using

file_handlers .

• protocol_handlers : PWAs can register to be handlers for predefined or custom

protocols. Current usage stands at 0% on desktop and 0.01% for mobile web sites.

Figure 17.15. Top manifest categories.

Part II Chapter 17 : PWA

2022 Web Almanac by HTTP Archive 545

https://almanac.httparchive.org/static/images/2022/pwa/top-manifest-cats.png
https://almanac.httparchive.org/static/images/2022/pwa/top-manifest-cats.png

• share_target : 5.3% of desktop and 3.1% of mobile PWAs have the ability to

register themselves to receive shared data.

• Window Controls Overlay647: The ability to free the area generally occupied by the

title bar is a desktop only feature. This feature has recently launched in Chromium

105 and 0.01% of manifests of desktop PWAs are utilizing it.

• note_taking : 0% of desktop and 0.01% of mobile sites are using the ability to

have special integration as a convenient way of taking a quick note.

Manifest preferring native

There is a property in the manifest that specifies if applications listed in the

related_applications field should be preferred over the web application. This might make

the user agent suggest the installation of the related app instead of the web app. From all the

manifest files analyzed, only 2.3% on desktop and 2.0% on mobile manifests set this property.

Fugu APIs

PWAs go hand in hand with advanced web capabilities. These capabilities are generally part of

project Fugu which is the codename for a collection of new web platform features incubating

within the Chromium project.

From the growing list of features that have been added to the web platform, these are the top

APIs being used on the web that are useful for PWAs with web:

Figure 17.16. Manifest files with a related_applications field on mobile

2.0%

Figure 17.17. Most used Fugu API (desktop)

8.8%

647. https://wicg.github.io/window-controls-overlay/

Part II Chapter 17 : PWA

546 2022 Web Almanac by HTTP Archive

https://wicg.github.io/window-controls-overlay/

We won’t delve into these much more as we have a separate Capabilities chapter that covers

them.

PWA insights from Lighthouse

Lighthouse648 is an open-source, automated tool for improving the quality of web pages. It can be

used to run a number of audits on a website and has a dedicated category for PWA audits. The

available data sheds some light on interesting facts about the state of PWAs these past 12

months.

Figure 17.18. Most used Fugu APIs.

Api Desktop Mobile

Web Share 8.8% 8.4%

Add to Home Screen 8.6% 7.7%

Service worker 4.2% 3.9%

Push 2.0% 1.9%

648. https://developer.chrome.com/docs/lighthouse/

Part II Chapter 17 : PWA

2022 Web Almanac by HTTP Archive 547

https://developer.chrome.com/docs/lighthouse/

Lighthouse audits

It is not surprising to see PWA sites passing the PWA audits much more frequently than the

general web, though some audits such as the presence of a viewport meta tag649 and the apple-

touch-icon650 meta tag are also often applicable—and used–by non-PWA sites.

Figure 17.19. Lighthouse PWA Audits for desktop.

649. https://web.dev/viewport/#how-to-add-a-viewport-meta-tag
650. https://web.dev/apple-touch-icon/#how-the-lighthouse-apple-touch-icon-audit-fails

Part II Chapter 17 : PWA

548 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/pwa/lighthouse-pwa-audits-desktop.png
https://almanac.httparchive.org/static/images/2022/pwa/lighthouse-pwa-audits-desktop.png
https://web.dev/viewport/#how-to-add-a-viewport-meta-tag
https://web.dev/apple-touch-icon/#how-the-lighthouse-apple-touch-icon-audit-fails
https://web.dev/apple-touch-icon/#how-the-lighthouse-apple-touch-icon-audit-fails

Looking at the Lighthouse data on mobile sites we see similar stats, but the mobile-only

content-width meta tag651 shows here and is pleasingly passed by both.

The presence of a viewport meta tag is relevant because it removes a 300-350ms delay that

waits for a double-tap back when that was the way to zoom in. It has the additional benefit on

mobile devices of optimizing the app for the device’s screen size. It is not surprising that almost

all websites, PWA or not, include this.

Installable manifest also appears in both top 3 lists. As expected, this has a very high value for

PWA sites, both on desktop (90.2%) and mobile (95.2%), with a very low counterpart for all

websites, presumably because developers don’t intend for these to be installed.

Finally, apple-touch-icon is third on PWA-related Lighthouse audits. Since iOS 1.1.3, Safari

for iOS has supported a way for developers to specify an image that will be used to represent

the web site or app on the home screen. This is mostly relevant for mobile devices.

Lighthouse scores

To conclude the Lighthouse insights section, we take a look at the overall Lighthouse PWA

scores for PWA sites, based on the audits.

Figure 17.20. Lighthouse PWA Audits for mobile.

651. https://developer.chrome.com/docs/lighthouse/pwa/content-width/

Part II Chapter 17 : PWA

2022 Web Almanac by HTTP Archive 549

https://almanac.httparchive.org/static/images/2022/pwa/lighthouse-pwa-audits-mobile.png
https://almanac.httparchive.org/static/images/2022/pwa/lighthouse-pwa-audits-mobile.png
https://developer.chrome.com/docs/lighthouse/pwa/content-width/

As expected, PWA sites tend to have considerably higher PWA audit scores. These audits look

into speed, reliability, installability and other PWA requirements, as detailed in their

documentation652.

Figure 17.21. Lighthouse scores for desktop.

Figure 17.22. Lighthouse scores for mobile.

652. https://developer.chrome.com/docs/lighthouse/pwa/

Part II Chapter 17 : PWA

550 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/pwa/lighthouse-scores-desktop.png
https://almanac.httparchive.org/static/images/2022/pwa/lighthouse-scores-desktop.png
https://almanac.httparchive.org/static/images/2022/pwa/lighthouse-scores-mobile.png
https://almanac.httparchive.org/static/images/2022/pwa/lighthouse-scores-mobile.png
https://developer.chrome.com/docs/lighthouse/pwa/

What’s also notable is the range of audit scores in PWA sites (50-100) representing the

difference in PWAs out there. In contrast the rest of the web has a fairly consistent range of

scores (20-40) reflecting the two main audits relevant for most sites discussed previously-

viewport and icons.

Service worker libraries

Service workers are really powerful tools, their API allows developers to create app

experiences that were impossible before, like creating their own offline experience or caching

assets to improve performance, however, creating code that handles the relationship between

your web app and the network comes with complexities and caveats. Here is where libraries

can make life better for developers by providing higher level abstractions around the Service

Worker API.

Workbox usage

Workbox653 is a set of libraries that was born to ease the usage of service workers for

developers. It includes a set of libraries that go from the basics that are reused in other

Workbox libraries with workbox-core654 to more specific tasks like caching strategies655,

background sync656, precaching657 and many more658.

653. https://developer.chrome.com/workbox/
654. https://developer.chrome.com/docs/workbox/modules/workbox-core/
655. https://developer.chrome.com/docs/workbox/modules/workbox-strategies/
656. https://developer.chrome.com/docs/workbox/modules/workbox-background-sync/
657. https://developer.chrome.com/docs/workbox/modules/workbox-precaching/
658. https://developer.chrome.com/docs/workbox/modules/

Part II Chapter 17 : PWA

2022 Web Almanac by HTTP Archive 551

https://developer.chrome.com/workbox/
https://developer.chrome.com/docs/workbox/modules/workbox-core/
https://developer.chrome.com/docs/workbox/modules/workbox-strategies/
https://developer.chrome.com/docs/workbox/modules/workbox-background-sync/
https://developer.chrome.com/docs/workbox/modules/workbox-precaching/
https://developer.chrome.com/docs/workbox/modules/

Compared with last year we see a big spike in Workbox usage. Last year its usage on mobile was

33% compared to 54% this year, and almost 60% of desktop PWAs use Workbox in some

capacity.

Since the growth that we saw in the number of pages controlled by service workers was not in

the top 1,000 websites but in more granular categories, and this growth on Workbox usage we

can infer that adoption of Workbox is happening inside the companies and websites that might

have waited for the technology to be adopted by the top websites, or that might not have the

need for a completely custom implementation of service workers and get the most out of

Workbox’s tested patterns.

Workbox packages

Workbox is structured in a way that developers can choose which parts to add to their projects

depending on their site’s needs. The usage shown below helps us document which PWA

features are developers implementing at the moment.

Figure 17.23. Use of Workbox on PWA pages.

Part II Chapter 17 : PWA

552 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/pwa/workbox-usage.png
https://almanac.httparchive.org/static/images/2022/pwa/workbox-usage.png

Here we also see an overall increase in usage, workbox-core . The base library saw an

increase of 14% in usage. workbox-core , together with workbox-routing and workbox-
strategies , is used to create a caching strategy that works to serve different artifacts in their

web app to improve performance. It makes sense they are all at the top as they enable a core

benefit of service workers.

There is also a considerable jump in usage on workbox-precaching . Pre-caching can be used

to emulate the model that packaged apps use. With workbox-precaching , you can choose

assets that will be cached at the time of service worker installation to make those assets load

faster in subsequents visits.

What is surprising is the rise in workbox-sw usage, because starting with Workbox 5659, the

Workbox team has encouraged developers to create custom bundles of the Workbox runtime

instead of using importScripts() to load workbox-sw (the runtime). The Workbox team

will continue supporting workbox-sw, but the new technique is now the recommended

approach. In fact, the defaults for the build tools have switched to prefer that method.

It is possible the increase is coming from libraries that use older versions of Workbox like

create-react-app version 3

Figure 17.24. Top Workbox packages.

659. https://github.com/GoogleChrome/workbox/releases/tag/v5.0.0

Part II Chapter 17 : PWA

2022 Web Almanac by HTTP Archive 553

https://almanac.httparchive.org/static/images/2022/pwa/top-workbox-packages.png
https://almanac.httparchive.org/static/images/2022/pwa/top-workbox-packages.png
https://github.com/GoogleChrome/workbox/releases/tag/v5.0.0
https://developers.google.com/web/tools/workbox/modules/workbox-sw
https://developers.google.com/web/tools/workbox/modules/workbox-sw
https://github.com/facebook/create-react-app/blob/v3.4.4/packages/react-scripts/package.json#L82
https://github.com/facebook/create-react-app/blob/v3.4.4/packages/react-scripts/package.json#L82

Web Push Notifications

Notifications are a powerful way to re-engage with users. It is also one characteristic that we

expect from platform-specific applications. Notifications are the perfect way to give timely,

relevant and precise information, and it is powered by the Web Push API.

Web Push notification acceptance rates

We can acknowledge that the implementation for web notifications has not been the

smoothest for developers or users, but it is important to also note how useful of a tool they are.

Like calendar notifications, subscription updates, or games, the important thing is that users get

to choose when to turn them on.

It bears repeating that for a notification to be useful it has to be timely, precise, and relevant660.

At the moment of showing the prompt to request permission, the user needs to understand the

value of the service. Developers have the chance to onboard the users into notifications before

they show the browser permissions dialog by sharing the advantages the users will get your

specific notifications.

With the growth of notification support and the UX improvements in different platforms, there

hasn’t been any major changes in the acceptance of notifications. Since early 2020 they have

Figure 17.25. Notification acceptance rates.

660. https://developers.google.com/web/fundamentals/push-notifications

Part II Chapter 17 : PWA

554 2022 Web Almanac by HTTP Archive

https://developers.google.com/web/fundamentals/push-notifications
https://almanac.httparchive.org/static/images/2022/pwa/notification-acceptance.png
https://almanac.httparchive.org/static/images/2022/pwa/notification-acceptance.png

been around the 6% acceptance rate on desktop and 20% on mobile.

Desktop and mobile notification acceptance rate share a common fashion, and it is the trend to

ignore notifications. The sum of “ignore” has gone up from 48% in February 2020 all the way up

to 70% in June 2022. For mobile platforms, from 1.88% in February 2020 to a staggering 34%

for June this year. Notification fatigue, coupled with increasing number of prompts for security,

privacy, and advanced capabilities are partially responsible, and work is being carried out to

address this and present better unified UX across different platforms.

Conclusion

2022 has been a stellar year for PWAs. The increasing features that allow integration of

installable web applications with desktop platforms has driven adoption of the technology by

big names in the industry. This past year advanced capabilities like protocol handlers, window

controls overlay, run on OS login, and more have started to position PWAs as a key technology

for application development. Whilst encouraging, this is not representative of the totality of the

web platform. service worker usage percentage fell to around half, compared to the data from

2021, but the rise of big applications constructed using PWA technology rose.

Manifest files continue to be in a healthy state, with a slight increase over last year to a 95% on

desktop. The correctness of these files is superb, but their completeness still leaves much to be

desired. Currently, only around 0.8% of all websites qualify as installable. Many advanced

capabilities like shortcuts and share_target are beginning to gain traction, appearing in

around 5% of PWAs. Other capabilities like protocol_handlers and windows controls

overlay are too new to have an impact on the data. This year also provides an initial snapshot

for many of these Fugu APIs.

Notification fatigue is, understandably, still a factor, but users also request and appreciate

legitimate notification use cases. Browser vendors are experimenting with less intrusive

permission requests and web push notifications have the advantage of providing a consistent

experience across platforms, giving the users the nudge they requested independently of the

device they are using.

We hope this information sheds some light in your PWA journey and helps developers

understand the current technology trends in API adoption.

Part II Chapter 17 : PWA

2022 Web Almanac by HTTP Archive 555

Author

Diego Gonzalez

@diekus diekus https://diek.us

Diego Gonzalez is a computer engineer from Costa Rica working as the PM for

PWA platform features for the Microsoft Edge browser.

Part II Chapter 17 : PWA

556 2022 Web Almanac by HTTP Archive

https://twitter.com/diekus
https://github.com/diekus
https://diek.us/

Part III Chapter 18

CMS

Written by Jonathan Wold
Reviewed by Alex Denning, Alon Kochba, and Dan Knauss
Analyzed by Colt Sliva
Edited by Dan Knauss

Introduction

In this chapter, we work to understand the current state of Content Management System

(CMS) ecosystems and the growing role they play in shaping users’ perception of how content

can be experienced on the web. Our goal is to explore the CMS landscape in general and the

characteristics of web pages created by these systems.

We believe that the CMS plays a key role in the success of our collective efforts to build a fast

and resilient web. Understanding the current state, asking questions, and posing lines of inquiry

for future work is our path to achieving this goal.

As a team, we’ve approached this year’s data with curiosity, and we’ve combined that curiosity

with personal expertise with several of the most popular CMSs. We recommend that you read

our analysis in light of the variability between CMSs and types of content on them.

Part III Chapter 18 : CMS

2022 Web Almanac by HTTP Archive 557

What is a CMS?

The term Content Management System (CMS) refers to systems enabling individuals and

organizations to create, manage, and publish content. A CMS for web content, specifically, is a

system aimed at creating, managing, and publishing content to be experienced on the web.

Each CMS implements a range of content management capabilities and corresponding

mechanisms for users to build websites around their content. CMSs also provide administrative

capabilities to facilitate the addition and management of content.

CMSs differ widely in the approaches they offer for building sites. Some provide ready-to-use

templates which are supplemented with user content, and others require user involvement for

designing and constructing the site structure.

In this chapter of the Web Almanac, we tried to account for all the things that form an

ecosystem around a CMS platform, including hosting providers, extension developers,

development agencies, site builders, etc. For this reason, when we refer to a CMS, we usually

intend both the platform itself and its surrounding ecosystem.

Our dataset, based on Wappalyzer’s definition661 of a CMS, identified over 270 individual CMSs.

Know a CMS that’s missing? Contribute to Wappalyzer662.

Some CMSs in the dataset are open source (e.g., WordPress and Joomla), and some of them are

proprietary (e.g., Wix and Squarespace). Some CMSs can be used on “free” hosted or self-

hosted plans, and there are also options for using these platforms on higher-tier plans up to the

enterprise level.

The CMS space as a whole is a complex, federated universe of discrete but also interrelated

CMS ecosystems.

CMS adoption

Our analysis throughout this work included desktop and mobile websites. The vast majority of

URLs we looked at are in both datasets, but some URLs are only accessed by desktop or mobile

devices. This can cause divergences in the data, so we considered desktop and mobile results

separately.

661. https://www.wappalyzer.com/technologies/cms
662. https://github.com/wappalyzer/wappalyzer/blob/7ac625c34432cb35d01abd683f88d3bfadca4cca/CONTRIBUTING.md

Part III Chapter 18 : CMS

558 2022 Web Almanac by HTTP Archive

https://www.wappalyzer.com/technologies/cms
https://github.com/wappalyzer/wappalyzer/blob/7ac625c34432cb35d01abd683f88d3bfadca4cca/CONTRIBUTING.md

As of June 2022, 45% of the websites in the Web Almanac’s desktop dataset were powered by

a CMS, indicating similar usage to 2021663. The mobile dataset shows an increase from 46% in

2021664 to 47% here in 2022. Looking closer at the desktop raw figures we actually see a slight

drop in both absolute and percentage terms, but the drop is more likely an artifact of minor

variances in attribution than an indicator of a downward trend in CMS usage. It should be noted

that the number of desktop sites tracked by HTTP Archive (and the source CrUX dataset) has

fallen considerably from 6.4 million sites to 5.4 million sites, while the number of mobile sites

has grown by about 400,000 sites from 7.5 million to 7.9 million sites. We take this increase to

reflect continued growth in mobile device usage at the expense of the desktop.

It is instructive to compare these numbers with another commonly used dataset, such as

W3Techs665. W3Techs reported that as of June 2021, 64.6% of websites are created using a

CMS. This is up from 59.2% in June 2020–an increase of over 9%.

The deviation between our analysis and W3Techs’ analysis can be explained by differences in

research methodologies and definitions of a CMS.

W3Techs’ definition is as follows: “Content Management Systems are applications for creating and

managing the content of a website. We include all such systems in this category, also systems that are

often classified as wikis, blog engines, discussion boards, static site generators, website editors or any

type of software that provides website content.”

Figure 18.1. CMS adoption.

663. https://almanac.httparchive.org/en/2021/cms#cms-adoption
664. https://almanac.httparchive.org/en/2021/cms#cms-adoption
665. https://w3techs.com/technologies/history_overview/content_management/all/q

Part III Chapter 18 : CMS

2022 Web Almanac by HTTP Archive 559

https://almanac.httparchive.org/static/images/2022/cms/cms-adoption.png
https://almanac.httparchive.org/static/images/2022/cms/cms-adoption.png
https://almanac.httparchive.org/en/2021/cms#cms-adoption
https://almanac.httparchive.org/en/2021/cms#cms-adoption
https://almanac.httparchive.org/en/2021/cms#cms-adoption
https://w3techs.com/technologies/history_overview/content_management/all/q

As we mentioned previously, Wappalyzer has a stricter definition of a CMS than we do.

Wappalyzer excludes some major CMSs that appear in W3Techs reports. You can read more

about our definition of a CMS on the Methodology page.

CMS adoption by geography

CMSs are used around the world, with some variance by country.

Among the countries with the highest number of websites, CMS adoption is highest in Italy and

Spain where 40%–41% of mobile sites are built with a CMS. Brazil and Japan have the lowest

adoption with only 31% and 32% respectively.

Of particular interest is the decrease across the board compared to our 2021 dataset666 when

individual countries are considered. Comparing year-over-year for mobile results, all countries

Figure 18.2. CMS adoption by geography.

666. https://almanac.httparchive.org/en/2021/cms#cms-adoption-by-geography

Part III Chapter 18 : CMS

560 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/cms/cms-adoption-geo.png
https://almanac.httparchive.org/static/images/2022/cms/cms-adoption-geo.png
https://almanac.httparchive.org/en/2021/cms#cms-adoption-by-geography

except India appear to show a drop, ranging from a 4% decrease for the UK and Germany to an

8% decrease for the US and Italy. Given the consistency of the decreases across geographies, it

seems more plausible to be a variance in attribution than a wholesale drop in CMS adoption.

We recommend evaluating this further in next year’s analysis.

CMS adoption by rank

We examined CMS adoption by the estimated rank of the sites included within the dataset.

According to the dataset, CMSs are used by fewer than 7% of the top 1,000 websites for both

desktop and mobile even though 47% of all mobile sites in the dataset use a CMS. A possible

explanation for this apparent discrepancy, and the one we offered last year, is that smaller

businesses with websites tend to use a popular CMS for their ease of use, and those CMSs are

easily identified. However, larger businesses with higher ranked websites tend to have custom-

built CMS solutions that we can’t identify.

Another explanation is that higher ranking sites with more resources allocated to their

development are more likely to obfuscate the identity of their CMS for security reasons. It is

improbable that more than 90% of the top 1,000 would forgo a CMS entirely and more likely

that they just don’t show up in our dataset.

A potentially correlated trend is the adoption of “headless” CMSs and the move to separate

content—and the CMS that powers it—from the frontend experience offered to end-users.

Figure 18.3. CMS adoption by rank.

Part III Chapter 18 : CMS

2022 Web Almanac by HTTP Archive 561

https://almanac.httparchive.org/static/images/2022/cms/cms-adoption-rank.png
https://almanac.httparchive.org/static/images/2022/cms/cms-adoption-rank.png

While our confidence in the overall dataset remains high, we’re interested in investigating the

adoption-by-rank dataset further in future editions of this report to see if more can be done to

detect and identify a greater number of CMSs to improve the overall accuracy of our results.

Most popular CMSs

Among all websites that use an identifiable CMS, WordPress sites account for the majority of

the relative market share—with over 35% adoption on mobile—followed by Wix (2%), Joomla

(1.8%), Drupal (1.6%), and Squarespace (1.0%).

Comparing year-over-year, Drupal and Joomla continue to decline in market share, while

Squarespace remains steady and Wix grows. WordPress continues its ascent, increasing 1.4%

over 2021 on mobile, and 0.2% over 2021 on desktop.

Figure 18.4. Top five CMSs year-over-year.

Part III Chapter 18 : CMS

562 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/cms/top-5-cms-yoy.png
https://almanac.httparchive.org/static/images/2022/cms/top-5-cms-yoy.png

Within WordPress, users often make use of a “page builder” that provides an interface for

content management. This year, with Wappalyzer’s detection methods improving, we looked at

page builder adoption. We discovered that of the WordPress sites attributed to a page builder

(approximately 34% of all WordPress sites in our dataset), Elementor and WP Bakery are the

clear winners, with Divi, SiteOrigin, and Oxygen trailing behind.

As we see it today, page builders exert significant influence on the performance of a site.

Historically, page builders have been anecdotal indicators of poor performance. As one

example, our dataset indicates that it’s not uncommon for websites to have multiple page

builders installed, adding a significant increase to the resources loaded by a site.

Now that we’re tracking page builder data, we’ll have the opportunity in future editions to

evaluate year-over-year changes in page builder adoption and look for correlations in those

changes to the overall performance of WordPress as a CMS.

CMS user experience

An important feature of CMSs is the user experience they provide for users visiting sites built

on these platforms. We attempt to examine these experiences through Real User

Measurements (RUM) via the Chrome User Experience Report667 (CrUX), and synthetic testing

Figure 18.5. WordPress page builder adoption.

667. https://developers.google.com/web/tools/chrome-user-experience-report

Part III Chapter 18 : CMS

2022 Web Almanac by HTTP Archive 563

https://almanac.httparchive.org/static/images/2022/cms/wordpress-page-builders.png
https://almanac.httparchive.org/static/images/2022/cms/wordpress-page-builders.png
https://developers.google.com/web/tools/chrome-user-experience-report

using Lighthouse.

Core Web Vitals

The Core Web Vitals Technology Report668 can be used to drill down into the available data and

view the progress of evaluated platforms updated on a monthly basis.

In this section we focus on data from June 2022 to provide a consistent timeframe for data

presented across the Web Almanac. We examine three important metrics provided by the

Chrome User Experience Report669 which can shed light on our understanding of how users are

experiencing CMS-powered web pages in the wild:

• Largest Contentful Paint670 (LCP)

• First Input Delay671 (FID)

• Cumulative Layout Shift672 (CLS)

These metrics aim to cover the technical fundamentals of a great web user experience. The

Performance chapter covers these metrics in greater detail, but here we are interested in

looking at them specifically in terms of CMSs.

Initially, let’s review the 10 CMS platforms with the highest number of origins and examine the

percentage of sites on each platform that have a “passing” grade. A passing grade means that

each of the above metrics must be in the “good” (green) range for each site: an LCP of 2.5

seconds or less, a FID of 100ms or less, and a CLS of 0.1 or less.

668. https://httparchive.org/reports/cwv-tech
669. https://almanac.httparchive.org/en/2021/methodology#chrome-ux-report
670. https://web.dev/lcp/
671. https://web.dev/fid/
672. https://web.dev/cls/

Part III Chapter 18 : CMS

564 2022 Web Almanac by HTTP Archive

https://httparchive.org/reports/cwv-tech
https://almanac.httparchive.org/en/2021/methodology#chrome-ux-report
https://web.dev/lcp/
https://web.dev/fid/
https://web.dev/cls/

We can see that desktop visitors generally score better than mobile. This can be explained by

resource limitations on mobile devices and poorer connections. The large difference between

mobile and desktop performance on some platforms also suggests that very different pages are

served to users depending on the device they use.

In June, for mobile devices, Duda had the largest percentage of passing sites, with 67% of

mobile sites passing all three CWVs. WordPress trailed farthest behind, with 30% of its sites

passing. Nevertheless, this indicates a significant increase over our 2021 data, where only 19%

of WordPress sites passed.

Desktop device experience was better for most CMSs. Duda had the largest CWV passing rate

at 68%. WordPress had the lowest ratio of passing sites: 30%.

We can also evaluate the progress of these CMS platforms’ performance on mobile devices by

looking at last year’s data:

Figure 18.6. Core web vitals performance by CMS.

Part III Chapter 18 : CMS

2022 Web Almanac by HTTP Archive 565

https://almanac.httparchive.org/static/images/2022/cms/top-cwv-performance.png
https://almanac.httparchive.org/static/images/2022/cms/top-cwv-performance.png

All of these CMSs showed an improvement in the percentage of origins with good CWVs since

June 2021.

Let’s drill into the three Core Web Vitals to see where each platform has room to improve and

which metrics improved the most since last year:

Largest Contentful Paint (LCP)

Largest Contentful Paint (LCP) measures the point in time when the page’s main content has

likely loaded and thus the page is useful to the user. LCP is assessed by measuring the render

time of the largest image or text block visible within the viewport.

A “good” LCP is regarded as being under 2.5 seconds.

Figure 18.7. Core web vitals mobile year-over-year.

Part III Chapter 18 : CMS

566 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/cms/top-cwv-yoy.png
https://almanac.httparchive.org/static/images/2022/cms/top-cwv-yoy.png

TYPO3 and Duda had the best LCP scores with 79% of origins having a “good” LCP experience.

WordPress and Squarespace have the worst LCP scores with 37% and 40% of origins having

good LCP scores, respectively.

Figure 18.8. Percentage of sites with good LCP by CMS.

Part III Chapter 18 : CMS

2022 Web Almanac by HTTP Archive 567

https://almanac.httparchive.org/static/images/2022/cms/lcp-cwv-performance.png
https://almanac.httparchive.org/static/images/2022/cms/lcp-cwv-performance.png

Compared to the 2021 dataset, all CMSs showed improvements in LCP. Joomla improved by

13%. Drupal, Squarespace, and TYPO3 improved by 10%. WordPress improved by 9%.

These improvements are a positive sign even though the numbers still are low for most CMSs.

The difficulty in achieving a good LCP score probably relates to the fact that the LCP is

dependent on the download of image/font/CSS and then displaying the appropriate HTML

elements. Achieving this in under 2.5 seconds for all device types and connection speeds can be

challenging. Improving LCP scores usually involves the correct use of caching, pre-loading,

resource prioritization, and lazy loading of other competing resources.

First Input Delay (FID)

First Input Delay (FID) measures the time from when a user first interacts with the page (i.e.,

when they click a link, tap on a button, or use a custom, JavaScript-powered control) to the time

Figure 18.9. LCP mobile year-over-year.

Part III Chapter 18 : CMS

568 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/cms/lcp-cwv-yoy.png
https://almanac.httparchive.org/static/images/2022/cms/lcp-cwv-yoy.png

when the browser is able to process that interaction. A “fast” FID from a user’s perspective

would be almost immediate feedback from their actions rather than a stalled experience.

Any delay is a pain point and could correlate with interference from other parts of the site

loading while the user tries to interact with the site. A “good” FID is regarded as being under

100 milliseconds.

In 2021’s report, the fact that almost all platforms manage to deliver a good FID raised

questions about the strictness of this metric. The Chrome team published an article673 that was

updated in May of 2022 to include a reference to a new metric, Interaction to Next Paint (INP)674

. Given its beta nature at the time of this writing, we’re limiting its inclusion to this reference in

anticipation of a possible expansion in next year’s report.

Figure 18.10. FID mobile year-over-year.

673. https://web.dev/responsiveness/
674. https://web.dev/inp/

Part III Chapter 18 : CMS

2022 Web Almanac by HTTP Archive 569

https://web.dev/responsiveness/
https://web.dev/inp/
https://almanac.httparchive.org/static/images/2022/cms/fid-cwv-yoy.png
https://almanac.httparchive.org/static/images/2022/cms/fid-cwv-yoy.png

Yearly data shows that most CMSs managed to improve their FID over the past year. Wix and

Weebly both regressed by several percentage points over the previous year’s data.

Cumulative Layout Shift (CLS)

Cumulative Layout Shift (CLS) measures the visual stability of content on a web page,

measuring the largest burst of layout shift scores for every unexpected layout shift that occurs

during the entire lifespan of a page that was not caused by direct user interactions.

A layout shift occurs any time a visible element changes its position from one rendered frame to

the next. The CLS metric evolved in 2021675, mainly introducing the concept of Session

Windows, to be fairer to long-lived pages and Single Page Apps (SPAs).

A score of 0.1 or below is measured as “good,” over 0.25 as “poor,” and anything in between

“needs improvement.”

675. https://web.dev/evolving-cls/

Part III Chapter 18 : CMS

570 2022 Web Almanac by HTTP Archive

https://web.dev/evolving-cls/

Comparing yearly data, we can see that all CMSs made progress. WordPress, Squarespace,

Duda, and Adobe Experience Manager in particular show significant gains.

Lighthouse

Lighthouse676 is an open-source, automated tool for improving the quality of web pages. One key

aspect of the tool is that it provides a set of audits to assess the status of a website in terms of

performance, accessibility, SEO, best practices, and more. Lighthouse reports provide lab data,

a way developers can get suggestions on how to improve website performance, but the

Lighthouse score has no direct implications on the actual field data collected by CrUX677. You can

read more on Lighthouse and the correlation between its lab scores and field data678.

Figure 18.11. CLS mobile year-over-year.

676. https://developers.google.com/web/tools/lighthouse/
677. https://developers.google.com/web/tools/chrome-user-experience-report
678. https://web.dev/lab-and-field-data-differences/

Part III Chapter 18 : CMS

2022 Web Almanac by HTTP Archive 571

https://almanac.httparchive.org/static/images/2022/cms/cls-cwv-yoy.png
https://almanac.httparchive.org/static/images/2022/cms/cls-cwv-yoy.png
https://developers.google.com/web/tools/lighthouse/
https://developers.google.com/web/tools/chrome-user-experience-report
https://web.dev/lab-and-field-data-differences/

HTTP Archive runs Lighthouse on its mobile web pages, which are also throttled to emulate a

slow 4G connection with a CPU slowdown, and also this year they started running on Desktop

as well.

We can analyze this data to provide another perspective on CMS performance, using the

results of these synthetic tests, which also include metrics that are not tracked in CrUX.

Performance score

The Lighthouse performance score679 is a weighted average of several scored metrics.

We can see that the median performance scores for most platforms on mobile are low and

range from about 19 to 35. Duda at 47 is the exception. As Philip Walton noted in 2021, this

Figure 18.12. Median lighthouse performance scores.

679. https://web.dev/performance-scoring/

Part III Chapter 18 : CMS

572 2022 Web Almanac by HTTP Archive

https://web.dev/performance-scoring/
https://almanac.httparchive.org/static/images/2022/cms/median-lighthouse-performance.png
https://almanac.httparchive.org/static/images/2022/cms/median-lighthouse-performance.png
https://philipwalton.com/articles/my-challenge-to-the-web-performance-community/

does not directly imply bad results680 in mobile field data, but it does imply that all platforms

have room for improvement, especially on low-end devices with network connections similar to

those Lighthouse attempts to emulate.

WordPress, Joomla, Drupal, and 1C-Bitrix showed no change from last year’s results. Wix

dropped from 30% to 29% while the rest showed improvement.

Desktop scores were good across the board with all CMSs seeing 10-20 point improvements.

This isn’t surprising, given the faster CPUs and networks available to the desktop.

SEO score

Search Engine Optimization (or SEO) is the practice of improving a website to make it more

easily found in search engines. This is covered more in-depth in our SEO chapter, but it relates

to CMSs as well. A CMS and content on it is generally set up to serve as much information to

search engine crawlers as possible to make it as easy as possible for them to index site content

appropriately in search engine results. Compared to a custom-built website, one might expect a

CMS to provide good SEO capabilities, and the Lighthouse scores in this category are

appropriately high.

680. https://philipwalton.com/articles/my-challenge-to-the-web-performance-community/

Part III Chapter 18 : CMS

2022 Web Almanac by HTTP Archive 573

https://philipwalton.com/articles/my-challenge-to-the-web-performance-community/

The median SEO scores in all of the top 10 platforms range from 83-92, a slight reduction from

84-95 in 2021681. Desktop scores are similar—slightly better in some cases, slightly worse in

others.

Accessibility score

An accessible website is a site designed and developed so that people with disabilities can use

them. Web accessibility also benefits people without disabilities, such as those on slow internet

connections. Read more in our Accessibility chapter.

Lighthouse provides a set of accessibility audits, and it returns a weighted average of all of

them. See Scoring Details682 for a full list of how each audit is weighted.

Figure 18.13. Median lighthouse SEO scores.

681. https://almanac.httparchive.org/en/2021/cms#seo-score
682. https://web.dev/accessibility-scoring/

Part III Chapter 18 : CMS

574 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/cms/median-lighthouse-seo.png
https://almanac.httparchive.org/static/images/2022/cms/median-lighthouse-seo.png
https://almanac.httparchive.org/en/2021/cms#seo-score
https://almanac.httparchive.org/en/2021/cms#seo-score
https://web.dev/accessibility-scoring/

Each accessibility audit is either a pass or a fail, but unlike other Lighthouse audits, a page

doesn’t get points for partially passing an accessibility audit. For example, if some elements

have screen reader-friendly names, but others don’t, that page gets a zero for the screen

reader-friendly-names audit.

The median Lighthouse accessibility score for the top 10 CMSs ranges between 77 and 91.

Squarespace had the highest score of 91, while 1C-Bitrix had the lowest accessibility scores.

The desktop scores are almost identical to mobile, perhaps reflecting that the same sites are

delivered to both desktop and mobile devices.

Best practices

The Lighthouse best practices683 try to ensure that web pages are following best practices for

Figure 18.14. Media Lighthouse accessibility scores.

683. https://web.dev/lighthouse-best-practices/

Part III Chapter 18 : CMS

2022 Web Almanac by HTTP Archive 575

https://almanac.httparchive.org/static/images/2022/cms/median-lighthouse-accessibility.png
https://almanac.httparchive.org/static/images/2022/cms/median-lighthouse-accessibility.png
https://web.dev/lighthouse-best-practices/

the web for a variety of different metrics such as supporting HTTPS, no errors logged in the

console, and more.

Wix had the highest median best practices score of 100, while many of the other top 10

platforms share the lowest score of 75. Again, desktop results are very similar though larger in

some cases. This may reflect incorrect image aspect ratios on mobile pages since most of the

other audits in this category are platform-based.

Resource weights

We also used HTTP Archive data to analyze the weight of resources used across different

platforms. We did this to highlight possible opportunities for performance improvement. Page

loading performance does not depend exclusively on the number of downloaded bytes, but

fewer bytes necessary to load a page results in reduced costs, fewer carbon emissions, and

Figure 18.15. Media Lighthouse best practices scores.

Part III Chapter 18 : CMS

576 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/cms/median-lighthouse-best-practices.png
https://almanac.httparchive.org/static/images/2022/cms/median-lighthouse-best-practices.png

potentially faster performance—especially for slower connections.

Most of the top five CMSs deliver a median page weight of around ~2 MB, except Squarespace

which delivers a larger ~3.5 MB. All except Joomla showed increases in page weight over 2021

data684.

Figure 18.16. Media resource weights by CMS.

684. https://almanac.httparchive.org/en/2021/cms#page-weight-breakdown

Part III Chapter 18 : CMS

2022 Web Almanac by HTTP Archive 577

https://almanac.httparchive.org/static/images/2022/cms/median-cms-page-weight.png
https://almanac.httparchive.org/static/images/2022/cms/median-cms-page-weight.png
https://almanac.httparchive.org/en/2021/cms#page-weight-breakdown
https://almanac.httparchive.org/en/2021/cms#page-weight-breakdown

The distribution of page weight in each platform’s percentiles is substantial. Page weight is

probably related to the differences in user content across web pages, the number of images

used, plugins installed, etc. The smallest pages delivered per platform come from WordPress, a

marked improvement over last year’s data. This year, WordPress only sends 673 KB for their

10th percentile of visits. The largest pages come from Squarespace, with ~11.4 MB delivered

for their 90th percentile of visits, a ~2 MB increase over last year’s data.

Page weight breakdown

Page weight is the sum in kilobytes of resources used on a page. We can attempt to evaluate

these different resource sizes across different CMSs.

Images

Images, which are usually the heaviest resource loaded on a web page, account for a large

portion of the resource weight.

Figure 18.17. Mobile page weight distribution by CMS.

Part III Chapter 18 : CMS

578 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/cms/distribution-cms-page-weight.png
https://almanac.httparchive.org/static/images/2022/cms/distribution-cms-page-weight.png

Wix delivers substantially fewer image bytes, with only 290 KB delivered for the median of

mobile views. This suggests good use of image compression and lazy image loading. All of the

other top five platforms deliver over 1 MB of images, with Squarespace delivering the largest

~1.7 MB.

Advanced image formats provide a considerable improvement in compression, enabling

resource savings and faster site loading. WebP is commonly supported in all major browsers

today, with over 95% support685. In addition, there are several newer image formats gaining

popularity and adoption, namely AVIF686, and JPEG-XL687.

We can examine the usage of the different image formats across the top CMSs:

Figure 18.18. Median image size by CMS.

685. https://caniuse.com/webp
686. https://caniuse.com/avif
687. https://jpegxl.info

Part III Chapter 18 : CMS

2022 Web Almanac by HTTP Archive 579

https://almanac.httparchive.org/static/images/2022/cms/median-cms-image-size.png
https://almanac.httparchive.org/static/images/2022/cms/median-cms-image-size.png
https://caniuse.com/webp
https://caniuse.com/avif
https://jpegxl.info/

Wix and Duda make the most use of WebP, at ~75% and 42% adoption respectively, while the

rest show minor increases.

With the growing support of WebP688, it seems all platforms have work to do to reduce the usage

of the older JPEG and PNG formats without compromising on image quality.

WordPress introduced support for WebP in WordPress 5.8, which was released in June of

2021. WebP support was planned to be included by default689 in WordPress 6.1. However, this

decision has been delayed. Eventually, we expect a significant increase in WebP adoption via

WordPress which may be apparent in the 2023 results.

Figure 18.19. Image format popularity by CMS.

688. https://caniuse.com/webp
689. https://make.wordpress.org/core/2022/06/30/plan-for-adding-webp-multiple-mime-support-for-images/

Part III Chapter 18 : CMS

580 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/cms/image-format-popularity.png
https://almanac.httparchive.org/static/images/2022/cms/image-format-popularity.png
https://caniuse.com/webp
https://make.wordpress.org/core/2022/06/30/plan-for-adding-webp-multiple-mime-support-for-images/

JavaScript

The top five CMSs all deliver pages that rely on JavaScript, with Drupal delivering the fewest

JavaScript bytes: 416 KB on mobile. Wix delivers the most JavaScript bytes—over 1.3 MB.

Figure 18.20. Median JavaScript resources by CMS.

Part III Chapter 18 : CMS

2022 Web Almanac by HTTP Archive 581

https://almanac.httparchive.org/static/images/2022/cms/median-size-js.png
https://almanac.httparchive.org/static/images/2022/cms/median-size-js.png

HTML document

Examining the HTML document sizes, we can see that most of the top CMSs deliver a median

HTML size of ~22 KB–37 KB. The only exception is Wix which delivers ~118 KB, a minor

improvement over 2021’s results. This may suggest extensive use of inlined resources and

shows an area that can be further improved.

Figure 18.21. Median HTML size by CMS.

Part III Chapter 18 : CMS

582 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/cms/median-size-html.png
https://almanac.httparchive.org/static/images/2022/cms/median-size-html.png

CSS

Next, we examine the use of explicit CSS resources that are downloaded. Here we can see a

different distribution between platforms that strengthens the case for inlining CSS. Wix

delivers the fewest CSS resources, with only ~9 KB sent on mobile views. WordPress delivers

the most with ~115 KB.

Figure 18.22. Median CSS size by CMS.

Part III Chapter 18 : CMS

2022 Web Almanac by HTTP Archive 583

https://almanac.httparchive.org/static/images/2022/cms/median-size-css.png
https://almanac.httparchive.org/static/images/2022/cms/median-size-css.png

Fonts

To display text, web developers often choose to use a variety of fonts. Joomla delivers the

fewest font bytes, with 82 KB on mobile views. Squarespace delivers the most with 202 KB.

WordPress in 2022

WordPress is the most commonly used CMS today. Almost three out of four sites built with a

CMS are using WordPress, which merits further discussion.

WordPress is an open-source project, which has been around since 2003. Many sites built on

WordPress use a variety of themes and plugins, sometimes through page builders such as

Elementor, WP Bakery, or Divi.

The WordPress ecosystem maintains the CMS and services required for additional

functionality through custom services and products (themes and plugins). This community has

an outsized impact, with a relatively small number of people maintaining both the CMS itself

and providing the additional functionality which makes WordPress sufficiently powerful and

flexible that it can serve most kinds of websites. This flexibility is important when explaining the

market share, but it also complicates the discussion around WordPress-based site

performance.

Figure 18.23. Median font size by CMS.

Part III Chapter 18 : CMS

584 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/cms/median-size-font.png
https://almanac.httparchive.org/static/images/2022/cms/median-size-font.png

In 2021, contributors from the WordPress community acknowledged the current state of

performance, in this proposal690 to create a performance-dedicated core team, which we hope

will improve the performance of the average WordPress site.

This year, we compared our results against last year, focusing on adoption by geography and

passing Core Web Vitals by geography along with a look at average resource usage.

Adoption by geography

First, we examined WordPress adoption by geography across all sites in our dataset in

comparison to our 2021 results.

Figure 18.24. WordPress adoption by geography year-over-year on mobile.

690. https://make.wordpress.org/core/2021/10/12/proposal-for-a-performance-team/

Part III Chapter 18 : CMS

2022 Web Almanac by HTTP Archive 585

https://make.wordpress.org/core/2021/10/12/proposal-for-a-performance-team/
https://almanac.httparchive.org/static/images/2022/cms/wordpress-adoption-geo-yoy.png
https://almanac.httparchive.org/static/images/2022/cms/wordpress-adoption-geo-yoy.png

According to our dataset, WordPress adoption is growing significantly in all the top

geographies.

Passing CWVs by geography

Next, we looked at the number of WordPress origins with passing scores for Core Web Vitals,

but this time we broke them down by geography, mobile device usage, and in comparison with

our 2021 results.

All geographies showed improvements, ranging from a 5% overall gain in Brazil to 14% in Japan.

Also worth noting is the large disparity across geographies, with Brazil at 10% total compared

to Japan at 52%. Brazil on the low end is growing, though, improving 100% year-over-year. As

we evaluate next year’s dataset, it may be worth investigating the low end performers further

to identify potential causes and opportunities for improvement.

Figure 18.25. WordPress core web vitals by geography year-over-year.

Part III Chapter 18 : CMS

586 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/cms/wordpress-cwv-yoy.png
https://almanac.httparchive.org/static/images/2022/cms/wordpress-cwv-yoy.png

Plugins

We explored how WordPress sites use external resources and separated them into resources

that are included in plugins, themes, and shipped in WordPress core (wp-includes) with

comparison to our 2021 results.

We can see no noticeable change in the number of resources used year on year. We’ll revisit

again next year, perhaps looking more closely at the implied performance impact of popular

themes and plugins.

Conclusion

CMS platforms continue to grow and are becoming more ubiquitous year by year. They are

essential for creating and consuming content on the internet, especially as more people and

businesses establish an online presence.

The introduction of Core Web Vitals, along with the advancements in performance data

visibility, has made web performance a priority everywhere CMSs are used. We hope the

insights in this chapter will help us all form a better understanding of the current state of the

web, ultimately making the web a better place.

CMSs are doing great work and have opportunity to further improve user experiences on the

Figure 18.26. WordPress resources year-over-year.

Part III Chapter 18 : CMS

2022 Web Almanac by HTTP Archive 587

https://almanac.httparchive.org/static/images/2022/cms/median-wordpress-resources.png
https://almanac.httparchive.org/static/images/2022/cms/median-wordpress-resources.png

web at scale by striving to enhance their infrastructure, experiment and integrate with new

standards as they evolve, and follow best practices.

On the other hand, Core Web Vitals as standards still have some evolving to do. We mentioned

some ideas for a better responsiveness metric691 above. In addition, navigation between pages in

a site should be better tracked and take into account the architectural differences between

Single-Page Applications (SPAs) and Multi-Page Applications (MPAs)692 architectures.

We look forward to next year’s results and hope to both expand our datasets and improve our

methodologies. In the meantime, onward and upward, let’s keep making the web better.

Author

Jonathan Wold

@sirjonathan sirjonathan https://jonathanwold.com

Jonathan Wold is an Open Web advocate with more than 17 years focused on the

WordPress ecosystem. Beyond his love for WordPress, he enjoys reading widely,

playing strategy games, acting, rock climbing, and occasionally writing in third-

person.

691. https://web.dev/responsiveness/
692. https://web.dev/vitals-spa-faq

Part III Chapter 18 : CMS

588 2022 Web Almanac by HTTP Archive

https://web.dev/responsiveness/
https://web.dev/vitals-spa-faq
https://twitter.com/sirjonathan
https://github.com/sirjonathan
https://jonathanwold.com/

Part III Chapter 19

Jamstack

Written by Laurie Voss and Salma Alam-Naylor
Reviewed by Barry Pollard
Analyzed by Laurie Voss and Barry Pollard
Edited by Abel Mathew

Introduction

One of the biggest problems in writing about Jamstack is defining what, exactly, the Jamstack is.

Here are three different definitions (we have emphasized some words):

1. Fast and secure sites and apps delivered by pre-rendering files and serving them

directly from a CDN, removing the requirement to manage or run web servers.

2. Jamstack is an architecture designed to make the web faster, more secure, and

easier to scale. It builds on many of the tools and workflows which developers love,

and which bring maximum productivity.

3. Jamstack is an architectural approach that decouples the web experience layer

from data and business logic, improving flexibility, scalability, performance, and

maintainability.

Part III Chapter 19 : Jamstack

2022 Web Almanac by HTTP Archive 589

All three of the above definitions come from Jamstack.org693: in 2020694, 2021695, and 2022696

respectively. It’s hard to think of a more authoritative source for the definition of Jamstack, so

it’s fair to say the definition is something of a moving target.

But as the emphasized words demonstrate, there’s clearly some continuity: the sites should be

fast, they should be pre-rendered, and they should use an architectural approach that

decouples “where you get your data” from “how you render your data”. Even if a precise

dictionary definition is hard to come by, Jamstack developers know what you mean when you

say “Jamstack”: you’ve got a site that loads really quickly, renders a lot of its useful content

once, at build time, and retrieves additional data (if it needs to) via JavaScript.

Disclosure: the two authors of this report were Netlify employees. Netlify invented the term Jamstack

and owns Jamstack.org. This report and the underlying analysis were reviewed and approved by others

not affiliated with Netlify.

Quantifying the Jamstack: what counts?

But the problem gets more tricky when you’re trying to put together the 2022 Web Almanac.

When you’re dealing with millions of websites, “I know it when I see it” can’t be your definition.

How do we quantify the Jamstack? How do we precisely identify it so we can learn about it? We

started by asking ourselves a series of questions.

Is every static site a Jamstack site?

That seems like it should be an obvious “yes”: if the page is flat HTML that renders all at once

then it certainly sounds like it should be Jamstack. But what about all those pages people built

in the 90s, before JavaScript was popular and most sites were static? Are they Jamstack? It felt

like they weren’t, not every static site is a Jamstack site. So we tried to think of why.

We landed on the “CDN” aspect of the early definition of Jamstack: it doesn’t have to be any

specific CDN provider, but part of the definition is definitely the “pre-rendering” part, which

implies: you’re rendering something, and then caching it. So a Jamstack site should be cached

(though whether you cache it yourself, or use a CDN, doesn’t matter).

That produces another edge-case: lots of sites are cached! Even completely dynamic sites often

cache things for a few minutes to avoid load spikes, and lots of sites are served by CDNs these

days, which are intrinsically a cache even if the site’s architecture owes nothing to Jamstack

693. https://jamstack.org/
694. https://web.archive.org/web/20200331214426/https://jamstack.org/
695. https://web.archive.org/web/20210924115533/https://jamstack.org/what-is-jamstack/
696. https://web.archive.org/web/20220809174445/https://jamstack.org/

Part III Chapter 19 : Jamstack

590 2022 Web Almanac by HTTP Archive

https://jamstack.org/
https://web.archive.org/web/20200331214426/https://jamstack.org/
https://web.archive.org/web/20210924115533/https://jamstack.org/what-is-jamstack/
https://web.archive.org/web/20220809174445/https://jamstack.org/

patterns. So what’s the difference between a normal cached site and a Jamstack site?

Cacheability is one part, but what else?

Does a Jamstack site have to use JavaScript?

We decided a Jamstack site doesn’t necessarily use JavaScript. Lots of Jamstack sites do, of

course: the “J” in Jamstack used to stand for “JavaScript”, after all. But even the earliest

definitions of Jamstack made it clear that using JavaScript was optional – a fully static site with

no JavaScript has always been Jamstack.

Does using the Jamstack mean a specific framework?

There are definitely some frameworks that people think of when they think about the

Jamstack; so much so that the 2020 and 2021 versions of the Web Almanac defined the

Jamstack exclusively by the frameworks used697, focusing on Static Site Generators (SSGs).

That’s logical enough, but we thought this presented some problems.

First, what about frameworks you can’t easily detect? As an example, Eleventy698, a growing and

popular choice in the Jamstack, leaves no trace in the generated HTML; it’s invisible to the end

user (by default, though you can add a generator tag699 if you want to). Not counting frameworks

that politely get out of the way seems wrong.

Secondly: there are a lot of frameworks! There are dozens of big ones and thousands of smaller

ones. Even for the ones that can be detected, we don’t always have a good way to detect them.

Plus, we agreed that it is definitely possible to build a site that feels “Jamstack-y” without using

a framework at all. Plain HTML can definitely be Jamstack.

Thirdly: using a framework that’s popular with Jamstack developers by no means guarantees

that the site you build will be a Jamstack site. If for architectural reasons it’s really slow to

render, or dynamically renders every page, it’s not going to be a Jamstack site even if you’re

using the same framework as many Jamstack sites. Not every site has to be Jamstack, and that’s

okay.

So we decided to ignore frameworks as part of the definition this time around, although as

you’ll see later, the frameworks you’d expect to find turned up in the results anyway.

697. https://almanac.httparchive.org/en/2021/jamstack
698. https://www.11ty.dev/
699. https://www.11ty.dev/docs/data-eleventy-supplied/#eleventy-variable

Part III Chapter 19 : Jamstack

2022 Web Almanac by HTTP Archive 591

https://almanac.httparchive.org/en/2021/jamstack
https://almanac.httparchive.org/en/2021/jamstack
https://www.11ty.dev/
https://www.11ty.dev/docs/data-eleventy-supplied/#eleventy-variable

Does a Jamstack site have to be performant?

The only feature common to all three definitions of Jamstack was performance. But “fast” is kind

of a fuzzy word when it comes to websites: if you’ve spent any time reading the Web Almanac,

you’ll know there are dozens of metrics you can use to measure the performance of a website,

and lots of good arguments for all of them.

So we thought hard about what a Jamstack site feels like. First was that a Jamstack site renders

its initial content very quickly. Of all the metrics we could use, we decided the one that most

clearly captured that idea was Largest Contentful Paint700, or LCP. This is a measure of the time it

takes for the largest item on the page to render. You can pull in extra content via APIs, or not,

and still be Jamstack, but you have to render something substantial quickly.

Defining the metrics

If you are not interested in the nuts and bolts of how we picked a precise definition of Jamstack

that we could represent as queries in the HTTP Archive, you can safely skip the next two

sections and head down to the growth of the Jamstack. Understanding our methodology is not

critical to you getting actionable insights here.

We knew we wanted to measure: sites that load most of their content very quickly, and can be

cached. After a lot of experimentation with different ways of measuring these things, we came

up with some specific metrics.

Largest Contentful Paint (LCP): we got the distribution of all LCP times across all pages, picked

the median of real-world user data from the Chrome UX Report701, and decided that any site

equal or less to the median counted as “loaded most content quickly”. This was 2.4 seconds on

mobile devices, and 2.0 seconds on desktop devices.

Cumulative Layout Shift (CLS): we wanted to avoid sites that very quickly load a skeleton but

then take a long time to load real content. The closest we could get to that is the Cumulative

Layout Shift702, a measure of how much the page layout jumps around while loading. While there

are ways to “game” CLS, we still believe it’s a reasonable proxy for what we’re trying to

measure. We liked this measure because we felt that a “jumpy” site also felt less “Jamstack-y”, a

word we were going to end up using a lot. Again, we picked the median of Chrome UX Report

data.

Chrome UX report data rounds CLS data to the nearest 0.05, which is a shame, because the “real”

700. https://web.dev/lcp/
701. https://developer.chrome.com/docs/crux/
702. https://web.dev/cls/

Part III Chapter 19 : Jamstack

592 2022 Web Almanac by HTTP Archive

https://web.dev/lcp/
https://developer.chrome.com/docs/crux/
https://web.dev/cls/
https://web.dev/cls/

median seems to be around 0.02-0.03, so on mobile it rounds down to zero and on desktop it rounds

up to 0.05. Since 0 excludes huge numbers of pages, we decided to use 0.05 as the best available

threshold for both mobile and desktop.

Caching: this was particularly tricky to quantify, since most home pages, even on Jamstack

sites, request revalidation even if they are in practice cached for a long time. We went with a

combination of HTTP Headers including Age , Cache-Control , and Expires that we found

were common in pages that could be cached for a long time.

We initially thought we’d need another measure to exclude “tiny” sites – sites that load very

quickly because they are just a “coming soon” or “Hello world” page that nobody would visit in

real life – but the HTTP Archive data is defined by their popularity according to Chrome703 user

visits, and very few of those sites are visited enough to make it into the sample (although

example.com is in there!).

A good question is: why not use Core Web Vitals704 (CWV) numbers for these metrics? For LCP,

our numbers are nearly the same as CWV. For CLS, the CWV team explicitly relaxed the

requirements705 (their threshold is more than double the median) which we thought was not

representative of a Jamstack experience. So we decided it was fairer to pick the median for

both. And CWV does not have a metric for”cacheability”.

“Jamstack-y”: a disclaimer

We want to be clear: this is a very, very fuzzy definition of “Jamstack”. In fact, we started using

the word “Jamstack-y” when doing this work, just to be clear.

The biggest source of error is fundamental: the definition of Jamstack is about architecture, but

architecture is not something you can determine by crawling the generated HTML, except in

very broad strokes. There is simply no way to look at a pile of HTML and tell whether the front-

end and the back-end were decoupled. So our measurements, while a best effort, are a rough

estimate, and we don’t want to misrepresent that.

This methodology both under-counts and over-counts Jamstack sites:

• If your site is static but not decoupled (for instance, SquareSpace706 and Wix707 sites

are clearly tightly coupled to their back-ends) but performs well, we’ll over-count it.

• If your Jamstack site is decoupled but you update your content very frequently,

703. https://developer.chrome.com/docs/crux/methodology/#popularity-eligibility
704. https://web.dev/vitals/
705. https://web.dev/defining-core-web-vitals-thresholds/#achievability-3
706. https://www.squarespace.com/
707. https://www.wix.com/

Part III Chapter 19 : Jamstack

2022 Web Almanac by HTTP Archive 593

https://developer.chrome.com/docs/crux/methodology/#popularity-eligibility
https://web.dev/vitals/
https://web.dev/defining-core-web-vitals-thresholds/#achievability-3
https://web.dev/defining-core-web-vitals-thresholds/#achievability-3
https://www.squarespace.com/
https://www.wix.com/

your caching strategy might be different than what we look for, so we’ll under-count

it.

• If your Jamstack site renders very slowly, even though it’s decoupled, your LCP

number will be high and we will under-count it.

• Conversely, if your non-Jamstack dynamic site is really fast, we might mistake it for

Jamstack and over-count it.

Despite all these caveats, we think this year’s estimate of “Jamstack-y” sites is an improvement

over a strictly SSG-focused definition and gives a better sense of where the web really is today,

which is after all the goal of the Almanac.

The growth of the Jamstack

Applying our new criteria, we measured what percentage of sites in the HTTP Archive qualify

as “Jamstack”. Because the measures we used in 2020 and 2021 were very different, we also

went back and re-measured those samples using the 2022 definitions.

Our headline finding is that 3.6% of mobile websites in 2022 seem “Jamstack-y” and that this

has grown more than 100% since 2020. On desktop, 2.7% of sites are Jamstack-y and that

number is also growing, the difference between the two groups being driven primarily by

Figure 19.1. Jamstack sites.

Part III Chapter 19 : Jamstack

594 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/jamstack/jamstack-counts.png
https://almanac.httparchive.org/static/images/2022/jamstack/jamstack-counts.png

different numbers of sites meeting the CLS threshold, which varies a lot by device because of

layout differences. Again, see above for the many caveats about how approximate this is.

The historic figures, with this new definition, are considerably higher than measured last year708

when we based the adoption purely on technologies used. This is perhaps not surprising when

we consider the limits of detecting certain technologies, coupled with the inclusion of

technologies that were not previously considered as Jamstack.

When we as humans randomly sampled the sites in the set we identified, we were mostly

satisfied that we were finding sites that, to the best of our abilities to judge, looked and felt like

Jamstack sites are supposed to look and feel.

To judge for yourself, and keep us honest, here are 10 “Jamstack-y” sites from our sample,

selected entirely at random without curation of any kind:

• www.cazador-del-sol.de

• snpbooks.org709

• eikounoayumi.jp710

• rochesteronline.precollegeprograms.org711

• surveyforcustomers.com712

• www.shopmate.eu

• docs.saleor.io713

• www.wildeyebrewing.ca

• 360insurancegroup.com714

• 144onthehill.co.uk715

Whether or not exactly 3.6% (or 2.7% on desktop) of the web is Jamstack – which, because the

definition of Jamstack relies on architectural choices we can’t verify, we cannot definitively say

– what we can be sure of is that Jamstack is growing. The percentage of sites that meet all of

our criteria has been getting steadily bigger year on year. The web is getting more “Jamstack-y”.

Of course, since our definition is two performance metrics and a caching metric, one way we

708. https://almanac.httparchive.org/en/2021/jamstack#adoption-of-ssgs
709. https://snpbooks.org/
710. https://eikounoayumi.jp/
711. https://rochesteronline.precollegeprograms.org/
712. https://surveyforcustomers.com/
713. https://docs.saleor.io/
714. https://360insurancegroup.com/
715. https://144onthehill.co.uk/

Part III Chapter 19 : Jamstack

2022 Web Almanac by HTTP Archive 595

https://almanac.httparchive.org/en/2021/jamstack#adoption-of-ssgs
https://www.cazador-del-sol.de/
https://snpbooks.org/
https://eikounoayumi.jp/
https://rochesteronline.precollegeprograms.org/
https://surveyforcustomers.com/
https://www.shopmate.eu/
https://docs.saleor.io/
https://www.wildeyebrewing.ca/
https://360insurancegroup.com/
https://144onthehill.co.uk/

could be wrong is if the web is just getting more performant in general. To check that, we split

the metrics back up (this is mobile data; desktop data was not significantly different):

As you can see, there has been some mild improvement in our metrics from 2020 to 2022.

However, even the smallest number here – the percentage of sites that meet our caching

criteria – is 11-14% of the web, depending on the year and whether you’re looking at mobile or

desktop. Our set of Jamstack sites is the intersection of these groups; the set of sites that meet

all 3 of these criteria at the same time is a lot smaller than any of the individual groups.

So we really are looking at a distinct subset of sites, and the set is growing a lot faster than the

performance of the web as a whole is improving. We aren’t just measuring “how many fast sites

are there”.

Jamstack-y frameworks

Having satisfied ourselves that Jamstack-y sites are real and identifiable, we can now ask some

questions about them. This is where it gets fun: because our definition of Jamstack-y doesn’t

include a framework, we can look at our sites and see what frameworks show up most often in

the Jamstack.

We used framework identifications provided for us by Wappalyzer, which means (as we

mentioned earlier) some “invisible” frameworks like Eleventy can’t be counted or analyzed.

Figure 19.2. Changes in Jamstack metrics over time on mobile.

Part III Chapter 19 : Jamstack

596 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/jamstack/changes-in-jamstack-counts-over-time.png
https://almanac.httparchive.org/static/images/2022/jamstack/changes-in-jamstack-counts-over-time.png

Wappalyzer has a somewhat arbitrary distinction between “web frameworks” and “JavaScript

frameworks”. Here are the top 10 JavaScript frameworks for the web as a whole:

And here’s the top 10 in Jamstack sites:

Figure 19.3. JavaScript frameworks used by all sites.

Part III Chapter 19 : Jamstack

2022 Web Almanac by HTTP Archive 597

https://almanac.httparchive.org/static/images/2022/jamstack/all-sites-javascript-frameworks.png
https://almanac.httparchive.org/static/images/2022/jamstack/all-sites-javascript-frameworks.png

You can see that React is more popular in the Jamstack than the general web, and so is Gatsby.

Now let’s look at “web frameworks”, again as somewhat arbitrarily defined by Wappalyzer:

Figure 19.4. JavaScript frameworks used by Jamstack sites.

Part III Chapter 19 : Jamstack

598 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/jamstack/jamstack-javascript-frameworks.png
https://almanac.httparchive.org/static/images/2022/jamstack/jamstack-javascript-frameworks.png

A great question here is: why are Next.js and Nuxt.js considered web frameworks, but Vue.js

and React considered JavaScript frameworks? But leaving that aside, you can see that

Microsoft’s ASP.Net framework is extremely popular across the web as a whole, and so is

stalwart Ruby on Rails. What does it look like in the Jamstack?

Figure 19.5. Web frameworks used by all sites.

Part III Chapter 19 : Jamstack

2022 Web Almanac by HTTP Archive 599

https://almanac.httparchive.org/static/images/2022/jamstack/all-sites-web-frameworks.png
https://almanac.httparchive.org/static/images/2022/jamstack/all-sites-web-frameworks.png

As you can see, while still the number one web framework, ASP.Net is far less popular in

Jamstack, and so is Ruby on Rails. Instead, Jamstack favorite Next.js climbs from fifth to third

place, and Nuxt.js from seventh to fifth. A surprising addition is Symfony, which misses the cut

for general sites (it’s number 11) but climbs all the way to second place in our Jamstack set.

Since Next.js and Nuxt.js are two of the biggest frameworks in the Jamstack community, this is

not a huge surprise, but it was again nice to see our framework-agnostic definition correctly

identifying “Jamstack-y” sites.

At first glance it might be surprising that ASP.Net is still #1 in the Jamstack-y group, and even

more to see PHP-based Symfony hit #2. But there’s no reason you can’t build a performant,

modern site using ASP.NET or PHP: Jamstack is an architectural approach, not any specific list

of technologies, so we hope those working in less-trendy tech stacks will find this result

encouraging.

What about the SSGs? Wappalyzer has them as a separate category; here are their numbers for

both Jamstack-y and general sites (note: we added Nuxt.js and Next.js manually to this list;

Wappalyzer does not consider them SSGs but both can be used that way, so we thought it was

Figure 19.6. Web frameworks used by Jamstack sites.

Part III Chapter 19 : Jamstack

600 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/jamstack/jamstack-web-frameworks.png
https://almanac.httparchive.org/static/images/2022/jamstack/jamstack-web-frameworks.png

useful to consider them). Here they are for all sites:

And here they are for Jamstack sites:

Figure 19.7. Detectable SSGs used by all sites.

Part III Chapter 19 : Jamstack

2022 Web Almanac by HTTP Archive 601

https://almanac.httparchive.org/static/images/2022/jamstack/all-sites-web-frameworks.png
https://almanac.httparchive.org/static/images/2022/jamstack/all-sites-web-frameworks.png

As you can see, it’s very much the same list, in almost the same order, although Nuxt drops a few

spots. This makes intuitive sense, since you’d expect sites generated by SSGs to qualify as

Jamstack-y, although they are clearly not the only way to achieve that architectural goal.

The SSGs also make up a much larger percentage of all Jamstack sites than they do of all sites in

general, indicating that an SSG is a pretty good way of getting a Jamstack site. However, using

an SSG doesn’t guarantee you’ll make a Jamstack site. Take a look at the total numbers of some

of the frameworks in our sample:

Figure 19.8. Detectable SSGs used by Jamstack sites.

Part III Chapter 19 : Jamstack

602 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/jamstack/jamstack-web-frameworks.png
https://almanac.httparchive.org/static/images/2022/jamstack/jamstack-web-frameworks.png

For all the SSGs, the percentage of sites that qualified as Jamstack-y by our definition was less

than the total number of sites in that framework. Jekyll does best with more than a third of sites

in Jekyll also meeting our criteria. Next and Nuxt have particularly low percentages, which is to

be expected since even though they can be used as SSGs they are also frequently used to make

dynamic sites, and we don’t have a way of determining which mode they’re in.

Jamstack-y hosting

We were also interested in where people host their Jamstack-y sites. Would there be a pattern?

Once again, we used Wappalyzer’s data to identify technologies, this time using their Platform

as a Service (PaaS) category.

Figure 19.9. SSGs as a percentage of Jamstack sites (desktop).

SSG All sites Jamstack sites Jamstack %

Next.js 39,928 2,651 7%

Nuxt.js 24,600 824 3%

Gatsby 12,014 1,765 15%

Hugo 5,071 1,135 22%

Jekyll 3,531 1,259 36%

Part III Chapter 19 : Jamstack

2022 Web Almanac by HTTP Archive 603

And here for Jamstack sites:

Figure 19.10. PaaS used by all sites.

Part III Chapter 19 : Jamstack

604 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/jamstack/all-sites-paas.png
https://almanac.httparchive.org/static/images/2022/jamstack/all-sites-paas.png

Web giant Amazon Web Services is unsurprisingly dominant in both sets, but there are some

significant differences between the global preferences and those of Jamstack-y developers.

WP Engine, Azure, and WordPress.com, hugely popular on the web as a whole, drop

significantly in popularity in the Jamstack crowd. GitHub pages, which is #11 on the wider web,

is #2 in the Jamstack set. Meanwhile Netlify and Vercel, darlings of Jamstack developers,

occupy the #3 and #5 spots, while in the larger web Netlify is at #10 and Vercel at #14 (not

shown). Pantheon and Acquia Cloud Platform, neither in the top 10 overall, jump significantly

from #11 to #4 and from #12 to #6 respectively.

The change in relative popularity of some of these hosts relative to the wider web is perhaps

surprising given that they are not all household names, so we thought it was worth looking at

how platform preferences changed from 2021 to 2022 in our sets. Using mobile data, here’s

how the percentage of Jamstack sites using various platforms changed from 2021 to 2022:

Figure 19.11. PaaS used by Jamstack sites.

Part III Chapter 19 : Jamstack

2022 Web Almanac by HTTP Archive 605

https://almanac.httparchive.org/static/images/2022/jamstack/jamstack-paas.png
https://almanac.httparchive.org/static/images/2022/jamstack/jamstack-paas.png

GitHub Pages, Pantheon, Acquia Cloud Platform and Heroku all appear to be declining in

popularity as a Jamstack hosting choice, while AWS, Netlify, Vercel, and Platform.sh are getting

more popular. Note that Cloudways or Azure are not in the 2021 PaaS data, so we can’t

compare them. We can hypothesize that AWS, Netlify and Vercel are growing in popularity

because they’re not just hosting—they offer a suite of tools for a developer workflow.

Absent from all the platform lists is web giant Cloudflare, which Wappalyzer categorizes as a

CDN rather than a PaaS. Although Cloudflare has a PaaS offering that is very Jamstack-y, called

Cloudflare Pages, Wappalyzer data does not distinguish between “hosted on a CDN” and “hosts

some assets on that CDN” so we could not include it in this analysis. The author believes that

Cloudflare is a very popular Jamstack hosting option, but we do not have good data to verify

this.

Conclusion

Our most important takeaway from this year’s analysis is that the Jamstack is hard to measure

just by looking at HTTP Archive data. Nevertheless, our ability to use a measurement approach

that was agnostic to both platform and framework and find in the resulting data strong

correlations to “known” Jamstack platforms and frameworks was an encouraging sign that we

have made progress in reliably identifying Jamstack sites in the Archive.

Figure 19.12. SSGs as a percentage of Jamstack sites (desktop).

PaaS 2021 2022 Change

Amazon Web Services 7.00% 9.45% 2.45%

GitHub Pages 2.62% 1.99% -0.63%

Pantheon 1.97% 1.70% -0.27%

Netlify 1.68% 1.72% 0.04%

Acquia Cloud Platform 1.37% 1.18% -0.20%

Vercel 0.50% 1.10% 0.60%

Cloudways 0.91% N/A

Azure 0.67% N/A

Platform.sh 0.27% 0.29% 0.02%

Heroku 0.28% 0.22% -0.05%

Part III Chapter 19 : Jamstack

606 2022 Web Almanac by HTTP Archive

Although we can’t claim to know exactly what percentage of the web is Jamstack, we can say

that around 3% of the web is Jamstack-y, and that this group has been growing strongly for the

last 3 years—a great sign for the Jamstack community.

We also found some frameworks and hosting platforms are more popular in the Jamstack than

they are in the wider web. This might be because they are technically better at achieving our

criteria, or it might just be because Jamstack developers have community preferences for

specific stacks.

Of course, if the Jamstack community prefers certain platforms and frameworks, that becomes

a self-reinforcing trend: there will be more documentation and tutorials on how to achieve

Jamstack sites using those tools, which will in turn make it easier to build Jamstack sites using

those tools. So while we believe (and the data demonstrates) that you can achieve Jamstack-y

results with any tech stack, we hope you find this data useful in identifying tools and platforms

that might make it easier to achieve a Jamstack site.

We also believe that the final useful takeaway from this exercise in quantifying “what counts as

Jamstack” is that now, as a developer, you have a firmer target to aim for when building a

Jamstack site. It doesn’t mean you pick a specific framework and forget about it: it’s about the

results. By analyzing your LCP and CLS times you can quantify if your efforts are “Jamstack-y”,

which is a useful thing to be able to automate.

Authors

Laurie Voss

seldo http://seldo.com

Laurie has been a web developer since 1996, with occasional breaks to found

companies like awe.sm716 (2010) and npm717 (2014). He currently works as a Data

Evangelist at Netlify718. He loves making the web bigger and better. He thinks one

of the best ways to do that is to encourage more people to do web development,

by teaching them existing techniques and by building tools and services that make

web development easier, so they don’t have to learn so much.

716. https://www.crunchbase.com/organization/snowball-factory
717. https://npmjs.com/
718. https://netlify.com

Part III Chapter 19 : Jamstack

2022 Web Almanac by HTTP Archive 607

https://github.com/seldo
http://seldo.com/
https://www.crunchbase.com/organization/snowball-factory
https://npmjs.com/
https://netlify.com/

Salma Alam-Naylor

@whitep4nth3r whitep4nth3r https://whitep4nth3r.com/

Salma writes code for your entertainment. She’s a live streamer, software engineer

and developer educator, and loves helping people get into tech. After a career as a

music teacher and comedian, Salma transitioned to technology in 2014,

specializing in front end development and tech leadership for startups, agencies

and global e-commerce. She currently works in Developer Relations. Find Salma

on Twitch719 to see what she’s currently building.

719. https://twitch.tv/whitep4nth3r

Part III Chapter 19 : Jamstack

608 2022 Web Almanac by HTTP Archive

https://twitter.com/whitep4nth3r
https://github.com/whitep4nth3r
https://whitep4nth3r.com/
https://twitch.tv/whitep4nth3r
https://twitch.tv/whitep4nth3r

Part III Chapter 20

Sustainability

Written by Laurent Devernay, Gerry McGovern, and Tim Frick
Reviewed by Chris Adams, Caleb Queern, and Edmond de Tournadre
Analyzed by Fershad Irani, Cameron Casher, and Arik Smith
Edited by Barry Pollard

Introduction

Back in 2019, GreenIT.fr estimated that there were 34 billion pieces of equipment and 4.1

billion internet users720. As such, the digital world’s contribution to humanity’s carbon footprint

may represent roughly 4% of primary energy consumption and greenhouse gas emissions, as

well as 0.2% of water consumption and 5.5% of electricity consumption.

Another significant indicator is its contribution to the depletion of abiotic resources (“not alive”

resources, such as metals). All the devices we use need materials in order to be produced. As

such, the manufacture of user equipment is considered the most important source of

environmental impact. This is followed by the end of life of equipment as most of them not

being recycled at all. It is way more impactful than data centers, the network or even the usage

of user equipment. Despite the efforts from some manufacturers, it will likely only get worse in

the coming years because of the depletion of some required materials (indium, copper, gold,

720. https://www.greenit.fr/environmental-footprint-of-the-digital-world/

Part III Chapter 20 : Sustainability

2022 Web Almanac by HTTP Archive 609

https://www.greenit.fr/environmental-footprint-of-the-digital-world/
https://www.greenit.fr/environmental-footprint-of-the-digital-world/

etc).

The previously mentioned study from GreenIT.fr states that the overall impact of digital

services has been steadily increasing for years and could double or triple between 2010 and

2025. If we want to avoid—or at least mitigate–this, we should reduce the number of connected

devices that we own and keep each of them for as long as possible: repairing rather than buying.

This might sound tough because some devices, especially smartphones, seem to be aging

quickly: the longer websites and applications take to load, the less a battery will last.

What we can do about that is to reduce the impact of digital services and change the way we

think about digital services as being immaterial and environmentally friendly by default.

Considering all the data gathered, the Web Almanac sounds like a great place to assess the

environmental impacts of websites as a whole. On this journey, we will also see how to reduce

them through best practices and how widely these are already adopted.

For this, we will differentiate:

• Moderation: implementing something only when needed. It could be digital as a

whole (do you really need connected diapers?), some functionality (are these social

media feeds useful on your homepage?) or content (decorative images, videos, etc).

Ask yourself if everything on your website is useful, used, usable (and reusable).

• Efficiency: how you reduce the size and/or impact of what remains on your website

after considering sobriety. For websites, this is mostly done through technical

optimizations such as minification, compression, caching, etc.

Some online activities to get started:

• Are you an eco-responsible Internet user?721

• What is the impact of your internet browsing?722

• Weight comparison of various elements composing a web page723

To guide us on this journey, we can rely on some resources, including:

• Repositories of best practices: 115 bonnes pratiques724, Handbook of sustainable

digital services725.

721. https://learninglab.gitlabpages.inria.fr/mooc-impacts-num/mooc-impacts-num-ressources/Partie3/Activites/Capsule_Partie3_4_AgirUtilisateur/story.html
722. https://learninglab.gitlabpages.inria.fr/mooc-impacts-num/mooc-impacts-num-ressources/Partie3/Activites/Capsule_Partie3_3_Mesurer/story.html
723. https://learninglab.gitlabpages.inria.fr/mooc-impacts-num/mooc-impacts-num-ressources/Partie3/Activites/Capsule_Partie3_2_Mesurer/indexEn.html
724. https://github.com/cnumr/best-practices/
725. https://gr491.isit-europe.org/en/

Part III Chapter 20 : Sustainability

610 2022 Web Almanac by HTTP Archive

https://learninglab.gitlabpages.inria.fr/mooc-impacts-num/mooc-impacts-num-ressources/Partie3/Activites/Capsule_Partie3_4_AgirUtilisateur/story.html
https://learninglab.gitlabpages.inria.fr/mooc-impacts-num/mooc-impacts-num-ressources/Partie3/Activites/Capsule_Partie3_3_Mesurer/story.html
https://learninglab.gitlabpages.inria.fr/mooc-impacts-num/mooc-impacts-num-ressources/Partie3/Activites/Capsule_Partie3_2_Mesurer/indexEn.html
https://github.com/cnumr/best-practices/
https://gr491.isit-europe.org/en/
https://gr491.isit-europe.org/en/

• Books and websites: Sustainable Web Design726.

• Online courses: INR - Sustainable IT727, Environmental impact of digital services728,

Principles of Sustainable Software Engineering729.

Limitations and hypothesis

We won’t be covering all best practices and available metrics can’t cover all of them. Metrics

can’t tell us if a given website has unnecessary functionality or if some images are purely

decorative. Even if such considerations go beyond the scope of this chapter, there is still a lot

that can be done. And with Lighthouse providing more and more types of audits, we can expect

new metrics to become available.

Carbon emissions are the only environmental indicator here but others—such as water

consumption, land use, abiotic resources consumption—should be considered to avoid pollution

transfers. This is exactly the point of LCA (Life Cycle Assessment)730. However, such an operation

requires expertise, lots of information and time. As of today, some structures are reaching for a

compromise by using less metrics and information, combined with LCI (Life Cycle Inventory).

This helps make the evaluation of environmental impacts more affordable and accessible (and

repeatable, for example in CI/CD or monitoring) while keeping under control the assumptions

you need to make.

We will only use metrics collected on pages but, in order to assess the environmental impacts of

some digital services, it might be more accurate to collect metrics on a whole user journey. For

example, on an ecommerce website, it would be better to consider a user purchasing an article

and paying for it.

Intersectional environmental issues

Sustainability has evolved significantly since its initial definition in 1987 by the Brundtland

Commission. It now incorporates a variety of intersectional social and governance issues (the

“S” and “G” in “ESG”) alongside its core environmental focus. A more responsible and

sustainable internet should reflect this.

In other words, digital sustainability cannot focus only on emissions. While climate change is a

huge driver, it cannot be used to justify inequitable solutions731 or fuel inequality732 [PDF] in any

726. https://sustainablewebdesign.org/
727. https://www.isit-academy.org/
728. https://learninglab.inria.fr/en/mooc-impacts-environnementaux-du-numerique/
729. https://docs.microsoft.com/en-us/learn/modules/sustainable-software-engineering-overview/
730. https://learninglab.gitlabpages.inria.fr/mooc-impacts-num/mooc-impacts-num-ressources/en/Partie3/FichesConcept/FC3.3.1-ACVservicesnumeriques-

MoocImpactNum.html?lang=en
731. https://qz.com/845206/renewable-energy-human-rights-violations/
732. https://www.iisd.org/system/files/publications/green-conflict-minerals.pdf

Part III Chapter 20 : Sustainability

2022 Web Almanac by HTTP Archive 611

https://sustainablewebdesign.org/
https://www.isit-academy.org/
https://learninglab.inria.fr/en/mooc-impacts-environnementaux-du-numerique/
https://docs.microsoft.com/en-us/learn/modules/sustainable-software-engineering-overview/
https://learninglab.gitlabpages.inria.fr/mooc-impacts-num/mooc-impacts-num-ressources/en/Partie3/FichesConcept/FC3.3.1-ACVservicesnumeriques-MoocImpactNum.html?lang=en
https://qz.com/845206/renewable-energy-human-rights-violations/
https://www.iisd.org/system/files/publications/green-conflict-minerals.pdf

way. It must be grounded in climate justice.

To this end, when designing digital products and services, keep the following intersectional

issues in mind:

• Accessibility: By removing barriers to content, your website becomes more usable

and accessible. This also improves its environmental impact because users,

especially those with disabilities, don’t have to find workarounds to accomplish

tasks.

• Privacy: A less intrusive website is better for users, giving them control over their

data and what they choose to share. Privacy-focused websites are also often more

environmentally-friendly in that they track, store, and maintain less data.

• Mis/disinformation: People turn to the internet to answer questions. Content that

includes misinformation (unintentional) and disinformation (intentional)

undermines users’ ability to do this in an efficient manner.

• Attention economy: Avoiding deceptive patterns733 keeps users focused, reducing

pointless browsing or diverting them from their initial purpose.

• Security: Aiming for sustainability can also help secure your website by reducing its

attack surface: less external resources, less functionality, etc

These are all part of a broader organizational approach to corporate digital responsibility734 that

aligns with digital sustainability principles.

Understanding the environmental impact of the web

The internet is the greatest, most energy intense, machine that has ever existed. To create and

maintain the internet requires massive material input. One server can cause one ton or more of

CO2 during manufacture. A laptop can cause 300 kg of CO2 to manufacture, and result in the

mining of 1,200 kg of raw materials. There is no such thing as sustainable mining.

While most of the energy and waste of the internet is embedded in the devices themselves, the

energy required to run the internet is not insignificant. While we are constantly marketed to

about how data is essentially free, to store as much as we want, data storage and processing

have real and exponentially growing energy demands. In 2015, for example, data centers in

Ireland were consuming 5% of electricity, by 2021 that had grown to 14%—more than the

demand of all the houses and buildings in rural Ireland.

733. https://blog.mozilla.org/en/internet-culture/mozilla-explains/deceptive-design-patterns/
734. https://www.mightybytes.com/blog/what-is-corporate-digital-responsibility/

Part III Chapter 20 : Sustainability

612 2022 Web Almanac by HTTP Archive

https://blog.mozilla.org/en/internet-culture/mozilla-explains/deceptive-design-patterns/
https://www.mightybytes.com/blog/what-is-corporate-digital-responsibility/

We can design and develop more sustainability for the web by focusing on better managing our

devices, and by seeking to put as little stress as possible on the devices that are used to interact

with our websites or apps. In relation to our own devices, we must focus on device life and

energy consumption. The longer the working life of a computer, the more we can amortize the

harm that was caused during its manufacture. The pinnacle of this thinking is going open source

and using an operating system like Linux to extend the life of a device. Open source is the

original digital sustainability philosophy by focusing on reusing and sharing. Nonetheless, it

should not prevent the implementation of sustainability best practices.

The less energy consumed during the design and development process the better. If we can

reuse code or content, then that’s a great idea. Use the least amount of wattage. A laptop will

be much more energy efficient than a desktop. Large screens, for example, should be avoided,

as they can consume as much energy themselves as a laptop. Anything that reduces energy

consumption is a good thing.

For popular, high demand websites or apps, up to 98% of the energy and waste consequences

will occur on the smartphones or laptops of the users. Small savings can make a big difference.

Danny van Kooten, developed a Mailchimp plugin for WordPress that is used by two million

websites. He made a 20 KB reduction in code and estimated that that resulted in a monthly

reduction of 59,000 kgs of CO2735.

Evaluating the environmental impact of websites

We decided on the methodology already shared by some available tools such as Ecograder,

Website Carbon, Ecoping, CO2.js and others736. Thanks to this, we estimate the Greenhouse Gas

emissions based solely on the amount of data transferred (for instance here, the page weight).

The community is still struggling on reaching a consensus on this topic737. Given the metrics

available here, this sounded as the best possible compromise. Yet, we are aware that not

everybody will agree on this and that this methodology should and will probably evolve in the

coming months or years.

So, we will start with an overview of page weight, then proceed with a calculation of carbon

emissions.

Page weight

Page weight represents the amount of data transferred to access the web page (based only on

735. https://raidboxes.io/en/blog/wordpress/wordpress-plugin-co2/
736. https://sustainablewebdesign.org/calculating-digital-emissions/
737. https://marmelab.com/blog/2022/04/05/greenframe-compare.html

Part III Chapter 20 : Sustainability

2022 Web Almanac by HTTP Archive 613

https://raidboxes.io/en/blog/wordpress/wordpress-plugin-co2/
https://raidboxes.io/en/blog/wordpress/wordpress-plugin-co2/
https://sustainablewebdesign.org/calculating-digital-emissions/
https://sustainablewebdesign.org/calculating-digital-emissions/
https://marmelab.com/blog/2022/04/05/greenframe-compare.html

HTTP requests). As explained before, it is here used as a proxy to calculate Greenhouse Gas

Emissions.

It is recommended to keep this metric as low as possible. 1 MB should be a maximum when you

get started but 500 kB should be your ultimate threshold738.

For more on this, see the Page Weight chapter.

Comparing page weights on mobile and desktop, we notice that the difference between them is

small, which seems surprising. Media should be served in an appropriate size and format

depending on the size of the screen. This might not be the case here.

At the 90th percentile, desktop pages were over 9 MB and mobile pages over 8 MB. We are far

from the recommended threshold of 500 kB. To find pages under this threshold, we have to get

to the 10th percentile. If we feel generous and aim for 1 MB, this can be found around the 25th

percentile. There is still a long way to go…

Carbon emissions

Note: The notion of “carbon emissions” is a simplification since we are considering Greenhouse Gas

Emissions, not only carbon emissions.

Figure 20.1. Number of kilobytes by percentile

738. https://infrequently.org/2021/03/the-performance-inequality-gap/

Part III Chapter 20 : Sustainability

614 2022 Web Almanac by HTTP Archive

https://infrequently.org/2021/03/the-performance-inequality-gap/
https://almanac.httparchive.org/static/images/2022/sustainability/kilobytes-number-by-percentile.png
https://almanac.httparchive.org/static/images/2022/sustainability/kilobytes-number-by-percentile.png

The carbon emissions for websites are very close on mobile and desktop. They seem quite low

on the 10th percentile (around 0.15 g eqCO2, which would be equivalent to a little less than 1

meter with a thermal car739). They reach as much as 2.76 g eqCO2 on the 90th percentile (a little

more than 14 meters with a thermal car).

This doesn’t seem like much but you should keep in mind that each website gets thousands or

even millions of visitors each month (sometimes even more) and what you see in the graph is

emissions for a single page visited once. The environmental impact each month for all websites

adds up.

Now for an additional graph: emissions per percentile by type of content.

Figure 20.2. Carbon emissions (g) by percentile

739. https://datagir.ademe.fr/apps/mon-impact-transport/

Part III Chapter 20 : Sustainability

2022 Web Almanac by HTTP Archive 615

https://almanac.httparchive.org/static/images/2022/sustainability/carbon-emissions-by-percentile.png
https://almanac.httparchive.org/static/images/2022/sustainability/carbon-emissions-by-percentile.png
https://datagir.ademe.fr/apps/mon-impact-transport/
https://datagir.ademe.fr/apps/mon-impact-transport/

Images and JavaScript seem to be the more impactful but images get even more impactful as

you go to upper percentiles. However, keep in mind that we only take data transfer into account

to calculate carbon emissions. Processing JavaScript is usually more impactful than images.

Once you have downloaded the JavaScript files, you still need to process them, sometimes

leading to reloading your page or fetching other resources. Nonetheless, this graph underlines

the necessity to reduce these impacts. It can be quite easy for images, as we will see later in this

chapter. It gets more tricky with JavaScript, even though there are some easier technical

optimizations such as minifying, compressing or reducing the need for it. More on that later too.

Number of requests

Requests are issued whenever a file is needed to load the page. As such, it helps represent the

impact of the page on the network and servers, which is why it is sometimes used to calculate

environmental impact. Analyzing the requests helps find possible optimizations, which we’ll

consider when discussing the various types of assets and external requests.

The number of requests should be kept to a minimum. Keeping an upper limit of no more than

25 is a fairly good start. But trackers and such often make that target difficult to reach.

Figure 20.3. Percent of total emissions by percentile by type (mobile)

Part III Chapter 20 : Sustainability

616 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/sustainability/percent-of-total-emissions-by-type-mobile.png
https://almanac.httparchive.org/static/images/2022/sustainability/percent-of-total-emissions-by-type-mobile.png

Comparing the number of requests of mobile and desktop, we once again find only a small

difference, which shouldn’t be the case. To find pages under the threshold of 25 HTTP requests,

we need to get to the 10th percentile again.

So, which content type is to blame for this?

Figure 20.4. Number of requests by percentile

Part III Chapter 20 : Sustainability

2022 Web Almanac by HTTP Archive 617

https://almanac.httparchive.org/static/images/2022/sustainability/number-of-requests-by-percentile.png
https://almanac.httparchive.org/static/images/2022/sustainability/number-of-requests-by-percentile.png

As usual, images are the main offenders but JavaScript is close behind.

There are almost as many HTTP requests for mobile and desktop versions, which shouldn’t be

the case. As with page weight, mobile pages should be kept as light as possible to take into

account aging devices, erratic connectivity and expensive mobile data. Since many individuals

still use the web in such suboptimal conditions, mobile web should account for this and do

everything possible to be accessible for all.

Figure 20.5. Number of requests by percentile by type on mobile

Part III Chapter 20 : Sustainability

618 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/sustainability/number-of-requests-by-percentile-by-type-mobile.png
https://almanac.httparchive.org/static/images/2022/sustainability/number-of-requests-by-percentile-by-type-mobile.png

There are almost as many HTTP requests for images and JavaScript but the overall weight is

much higher for images. JavaScript being generally heavier to process than images, this is still

bad news. Once again, the results are really close for mobile and desktop, even if it would seem

to make sense to offer lighter experiences on mobile.

More sustainable hosting

Note: Here (and elsewhere), you should find mention of “Green Hosting”. This is kind of a shortcut since

no hosting will be truly green, carbon neutral or other such things. We will focus here on how to use

more sustainable hosting.

For the majority of this chapter, we focus on how changes in the quantity of resources like

network, compute and storage affect the environmental impact of digital services—you might

think of this as in terms of consumption as a lever for sustainability. However there are other

levers too. You can’t efficiency your way to zero, and the same code, run on the same kind of

server, but running on greener energy will have a lower environmental impact than otherwise.

We can think of this lever as intensity.

Here there is some good news. Across the world, electricity grids we rely on are getting greener

over time, driven by the falling costs of renewables and storage. 38% of our electricity came

Figure 20.6. Number of bytes by percentile by type on mobile

Part III Chapter 20 : Sustainability

2022 Web Almanac by HTTP Archive 619

https://almanac.httparchive.org/static/images/2022/sustainability/number-of-bytes-by-percentile-by-type-mobile.png
https://almanac.httparchive.org/static/images/2022/sustainability/number-of-bytes-by-percentile-by-type-mobile.png

from clean sources in 2022 (examples740 in the ember climate, and this chart741).

However, not every grid, and not every region a provider operates is equally green. Amazon’s

Web Service’s customer carbon footprint tools742 show how running services in one region over

another can provide a measurable difference in carbon emissions, as does the open source

cloud carbon footprint743, for a growing number of providers. Elsewhere, the Green Web

Foundation744 also provides an API for looking up any domain, for an estimate of how much the

grid in that region is powered by fossil fuels.

You should however keep in mind that using renewable energy isn’t enough to provide truly

sustainable hosting. You should also check the PUE (Power Usage Effectiveness), WUE (Water

Usage Effectiveness), how equipment is handled, etc. To further investigate this, you could

check an article from Wholegrain Digital745 and the European Data Centres Code of Conduct746.

More generally, beware of companies claiming to be carbon neutral (as stated by the french

institute ADEME747), especially since most of them don’t include Scope 3 emissions. Also, as

stated above, compensating your carbon emissions is not enough, you should reduce them too.

How many of the sites listed in the HTTP Archive run on green hosting?

An increasing number of technology firms are also taking steps to green all the electricity they

buy to power their infrastructure. Companies like Microsoft and Salesforce already buy as

much green energy as their server farms use on an annual basis, as do many other companies.

We used the Green Web Foundation Dataset748 to see how many organizations are “green

hosts”, taking similar steps749, and where they have shared evidence of powering all the energy

they use on green energy, each year.

740. https://ember-climate.org/insights/research/global-electricity-review-2022/
741. https://public.flourish.studio/story/1176231/?utm_source=showcase&utm_campaign=story/1176231
742. https://aws.amazon.com/aws-cost-management/aws-customer-carbon-footprint-tool/
743. https://www.cloudcarbonfootprint.org/
744. https://www.thegreenwebfoundation.org/
745. https://www.wholegraindigital.com/blog/choose-a-green-web-host/
746. https://e3p.jrc.ec.europa.eu/communities/data-centres-code-conduct
747. https://presse.ademe.fr/2022/02/lademe-publie-un-avis-dexperts-sur-lutilisation-de-largument-de-neutralite-carbone-dans-les-communications.html
748. https://www.thegreenwebfoundation.org/green-web-datasets/
749. https://www.thegreenwebfoundation.org/what-we-accept-as-evidence-of-green-power/

Part III Chapter 20 : Sustainability

620 2022 Web Almanac by HTTP Archive

https://ember-climate.org/insights/research/global-electricity-review-2022/
https://public.flourish.studio/story/1176231/?utm_source=showcase&utm_campaign=story/1176231
https://aws.amazon.com/aws-cost-management/aws-customer-carbon-footprint-tool/
https://aws.amazon.com/aws-cost-management/aws-customer-carbon-footprint-tool/
https://www.cloudcarbonfootprint.org/
https://www.cloudcarbonfootprint.org/
https://www.thegreenwebfoundation.org/
https://www.thegreenwebfoundation.org/
https://www.wholegraindigital.com/blog/choose-a-green-web-host/
https://e3p.jrc.ec.europa.eu/communities/data-centres-code-conduct
https://presse.ademe.fr/2022/02/lademe-publie-un-avis-dexperts-sur-lutilisation-de-largument-de-neutralite-carbone-dans-les-communications.html
https://presse.ademe.fr/2022/02/lademe-publie-un-avis-dexperts-sur-lutilisation-de-largument-de-neutralite-carbone-dans-les-communications.html
https://www.thegreenwebfoundation.org/green-web-datasets/
https://www.thegreenwebfoundation.org/what-we-accept-as-evidence-of-green-power/
https://www.thegreenwebfoundation.org/what-we-accept-as-evidence-of-green-power/

Overall, only 10 percent of the measured websites rely on green hosting. This highlights that a

lot could and should be done on both sides: websites opting for green hosting as well as hosting

companies aiming for more sustainability.

Note: these figures for green domains are based on the information that is either shared directly with

The Green Web Foundation, or placed in the public domain, where it is linked in API responses for their

lookup service. See their explainer page750 for why a site might show up as “not green” when you think it

should.

Reducing the environmental impact of websites

Best practices cannot work without measurements and vice versa. Now that we have a better

representation of the environmental impacts of websites, let’s see how to mitigate this.

Avoiding waste

One of the most obvious ways to reduce the impact of websites is to avoid all that is

unnecessary.

Figure 20.7. % Green hosting

750. https://www.thegreenwebfoundation.org/support/why-does-my-website-show-up-as-grey-in-the-green-web-checker/

Part III Chapter 20 : Sustainability

2022 Web Almanac by HTTP Archive 621

https://almanac.httparchive.org/static/images/2022/sustainability/green-hosting-percentages.png
https://almanac.httparchive.org/static/images/2022/sustainability/green-hosting-percentages.png
https://www.thegreenwebfoundation.org/support/why-does-my-website-show-up-as-grey-in-the-green-web-checker/

• Reduce content and code waste: A great many websites and apps have unnecessary

content and features. Be the voice that asks whether we need this page or that

feature. Cliché stock images add nothing to most pages except weight. Removing

images is one of the best ways to reduce page weight. Unused code should go too.

• Reduce processing. Byte for byte, JavaScript has a much bigger impact than HTML,

CSS, images or text, because it causes energy-intensive processing to occur on the

user’s device. Try and choose the least energy intense implementation. Many web

pages don’t even need JavaScript. Always choose the lightest coding option.

• Choose the lightest communication option. Text is by far the most environmentally

friendly way to communicate751. Video is by far the most energy-intense and

unsustainable. As such, it should be used only if necessary, according to the needs of

users. In these cases, video should be integrated as efficiently as possible.

• Design for long life. Design so that those using older machines and older operating

systems can still use your website / app. Design so that you support people in

holding onto their devices as long as possible. From a digital perspective, there’s

nothing better you could do for the environment.

Loading unused assets

You should only load assets that are needed to display the page and more particularly the

portion of the page that is visible. This could be done through lazy-loading, critical CSS and

patterns such as Import on Interaction and Import on Visibility. It could also involve loading

images at the right size for the client device. We will mostly focus here on oversized fonts and

unused code.

Fonts

For sustainability, it is recommended to stick to system fonts752. If you really need to use some

custom fonts, there are some things to consider to avoid waste. Loading a font sometimes

involves loading lots of characters and symbols that you might not need. For example, not all

websites need Cyrillic characters but some fonts still include them natively. To check this, you

can use tools such as wakamaifondue753. To reduce the size of your font files, you should aim for

a WOFF2 format and using variable fonts754. You could also use subsets755 or use a tool such as

751. https://www.google.com/url?q=https://text.npr.org/&sa=D&source=docs&ust=1662467318246688&usg=AOvVaw2K1v83mXXmEePMRoG6edxq
752. https://www.smashingmagazine.com/2015/11/using-system-ui-fonts-practical-guide/
753. https://wakamaifondue.com/
754. https://the-sustainable.dev/reduce-the-weight-of-your-typography-with-variable-fonts/
755. https://everythingfonts.com/subsetter

Part III Chapter 20 : Sustainability

622 2022 Web Almanac by HTTP Archive

https://www.google.com/url?q=https://text.npr.org/&sa=D&source=docs&ust=1662467318246688&usg=AOvVaw2K1v83mXXmEePMRoG6edxq
https://www.google.com/url?q=https://text.npr.org/&sa=D&source=docs&ust=1662467318246688&usg=AOvVaw2K1v83mXXmEePMRoG6edxq
https://www.patterns.dev/posts/import-on-interaction/
https://www.patterns.dev/posts/import-on-visibility/
https://www.smashingmagazine.com/2015/11/using-system-ui-fonts-practical-guide/
https://wakamaifondue.com/
https://the-sustainable.dev/reduce-the-weight-of-your-typography-with-variable-fonts/
https://everythingfonts.com/subsetter

subfont756. The Google Fonts API offers some clever options for all this757. Regarding Google

Fonts, you should still keep GDPR in mind758.

For more on this topic, see the Fonts chapter. You can also find some documentation on

web.dev759.

Unused CSS

Unused CSS is especially found when using CSS frameworks (Bootstrap and others). When

doing so, you should keep in mind to remove unused CSS during your build phase. Chrome Dev

Tools offer a Coverage tool to check on this760. Be careful: on many websites, all CSS and

JavaScript are loaded on the first visit in order to cache them for further visits and exploration

of the website. This is not necessarily a bad thing, but unused code is one of the drawbacks that

you should keep in mind, especially because it might slow down further code processing.

The good news is the 10 percentile websites load no unnecessary CSS. Unfortunately, it rises

steadily on this graph, reaching more than 200 kB on the 90th percentile. Whether this for

early caching reasons or otherwise, this should be checked. For sustainability, 200 kB of CSS is a

big deal.

Figure 20.8. Unused CSS bytes

756. https://github.com/Munter/subfont
757. https://web.dev/api-for-fast-beautiful-web-fonts/
758. https://rewis.io/urteile/urteil/lhm-20-01-2022-3-o-1749320/
759. https://web.dev/reduce-webfont-size/
760. https://developer.chrome.com/docs/devtools/coverage/

Part III Chapter 20 : Sustainability

2022 Web Almanac by HTTP Archive 623

https://github.com/Munter/subfont
https://web.dev/api-for-fast-beautiful-web-fonts/
https://rewis.io/urteile/urteil/lhm-20-01-2022-3-o-1749320/
https://web.dev/reduce-webfont-size/
https://developer.chrome.com/docs/devtools/coverage/
https://developer.chrome.com/docs/devtools/coverage/
https://almanac.httparchive.org/static/images/2022/sustainability/unused-css-bytes.png
https://almanac.httparchive.org/static/images/2022/sustainability/unused-css-bytes.png

Unused JavaScript

The amount of unused JavaScript can grow quickly when adding dependencies or using

libraries such as jQuery. The Coverage tool from Chrome Dev Tools761 is a good way to check on

this. As for CSS, this is sometimes part of a strategy to cache everything needed for further

browsing. This should be balanced by the fact that unused JavaScript tends to result in longer

processing. When possible, look for smaller alternatives762 with only the functionality that you

need instead of loading the whole toolbox, hoping it will one day prove useful. Once upon a

time, jQuery was the all-in-one solution that you found on almost every website. As of today, a

lot of things can be handled with modern JavaScript763. Check your NPM dependencies and how

they make your bundle bigger764.

One again, the 10th percentile looks great with no unused JavaScript. However, this gets even

worse than CSS for the upper percentiles, reaching more than 600 kB on the 90th percentile.

This is already more than the ideal total page weight you should aim for.

Sustainable UX

Sustainable choices and optimizations can be made for a website before the development

Figure 20.9. Unused JavaScript bytes

761. https://developer.chrome.com/docs/devtools/coverage/
762. http://microjs.com
763. https://youmightnotneedjquery.com/
764. https://bundlephobia.com/

Part III Chapter 20 : Sustainability

624 2022 Web Almanac by HTTP Archive

https://developer.chrome.com/docs/devtools/coverage/
http://microjs.com/
https://youmightnotneedjquery.com/
https://youmightnotneedjquery.com/
https://bundlephobia.com/
https://bundlephobia.com/
https://almanac.httparchive.org/static/images/2022/sustainability/unused-javascript-bytes.png
https://almanac.httparchive.org/static/images/2022/sustainability/unused-javascript-bytes.png

process during the early stages of design and prototyping. It is possible to design user

experiences that prioritize efficient content from the beginning, even while creating

experiences that engage users as active participants in sustainability practices. Contrary to

some beliefs, all of this can be accomplished while still crafting beautiful, planet-centric web

experiences.

While emissions associated with specific user experience tasks are difficult to quantify, some

studies have estimated that consumer device use comprises as much as 52% of a product’s

overall digital footprint765. Therefore, it stands to reason that optimizing UX for sustainability

can significantly reduce a product’s environmental impact.

Designing for stakeholders

The most sustainable products are those that retain a clear picture of who stakeholders are,

including the non-human ones. In doing so, we have products that take both a human-centered

and planet-centered766 approach during the design process.

Engaging in streamlined practices such as stakeholder mapping767 is helpful in identifying an

ecosystem of stakeholders and their needs to set a path towards curating an inclusive

experience for everyone involved. You’ll be able to use this research to map out opportunities

for designing a product that prevents unintended consequences from ignoring the needs of all

stakeholders involved (human and non-human). This can be taken even further by leveraging

intersecting touchpoints to build planet-centric innovation into your business model768 that

aligns with users’ goals.

Optimizing user journeys

Crafting strategic user journeys that prioritize helping users achieve their goals in the least

amount of steps is one method for creating a carbon-friendly web experience for your site. The

less time a user spends navigating your product—overcoming obstacles, and completing their

tasks—the less energy, data, and resources are used during their visit. Strategies in doing so

often include being mindful in the use of images, videos, and visual assets to help drive user

engagement and direction.

This also involves a “less is more” approach by engaging in wasteless design practices that only

show content that is necessary to a user at a given time and emphasizing asset choices that

deliver the same value. These are all things that aid the user in getting what they need faster by

765. https://www.mightybytes.com/blog/where-do-digital-emissions-come-from/
766. https://planetcentricdesign.com/
767. https://www.mightybytes.com/blog/stakeholder-mapping/
768. https://www.mightybytes.com/blog/how-to-design-an-impact-business-model/

Part III Chapter 20 : Sustainability

2022 Web Almanac by HTTP Archive 625

https://www.mightybytes.com/blog/where-do-digital-emissions-come-from/
https://www.mightybytes.com/blog/where-do-digital-emissions-come-from/
https://planetcentricdesign.com/
https://www.mightybytes.com/blog/stakeholder-mapping/
https://www.mightybytes.com/blog/how-to-design-an-impact-business-model/

avoiding the already surging attention economy769 on our devices for each page they visit.

Continue to test and gather user feedback through prototyping and other methods to identify

potential pain points that ensure you’re creating the most optimal experience for your users.

Empowering sustainable behavior

There has been a rising popularity in incorporating a choice architecture into product features

to nudge users into making sustainable choices relative to the environmental touchpoint of that

product. Examples of this practice range anywhere from providing users more sustainable

packaging options at checkout, displaying the most carbon-friendly product options, and even

building reward systems or dashboards that visualize and incentivize these choices.

Aiding in this decision-making and offering these types of choice can not only help users

interact with your website in more sustainable ways, but also help remove barriers of entry that

help optimize user interactions. More recently, popular options can include accessibility

features, language choices, device optimization, or the ever-popular dark mode that utilizes

low-energy colors while promoting proper contrast.

These types of options help minimize potential pain points of users while enabling a custom

experience that saves time, energy, and prevents frustration in a user. The power of choice can

grow deeper into popular opt-out features such as the enabling and frequency of

notifications—all choices that inevitably save resources when utilized, thus allowing users to

customize both their experience and impact per visit.

Designing for circularity and end-of-Life

Analyzing and understanding the entire lifecycle of a digital product or service reveals

opportunities to reduce waste and improve environmental impact over time. Defining and

tracking clear, measurable success indicators can help guide this process.

• Circularity: Designing modular, easily replaceable or updatable components and

focusing on continuous improvement can help you reduce technical debt770 and

prolong the life of a digital product or service. This also saves time and reduces

resource use.

• End-of-Life: Creating a clear retirement plan for your digital product or service will

reduce the energy required to store and serve outdated or unused data. Plus, good

data disposal practices also align with emerging data privacy laws that respect

users’ “right to be forgotten”.

769. https://econreview.berkeley.edu/paying-attention-the-attention-economy/
770. https://www.mightybytes.com/blog/technical-debt-agile-and-sustainability/

Part III Chapter 20 : Sustainability

626 2022 Web Almanac by HTTP Archive

https://econreview.berkeley.edu/paying-attention-the-attention-economy/
https://www.mightybytes.com/blog/technical-debt-agile-and-sustainability/

Optimizing your content

Let’s say you have optimized your website, making sure unneeded content and functionalities

were removed. This was the moderation part (and usually the tough part). We can now look into

the efficiency part: making sure everything you keep is as sustainable as possible.

In this section, we will look into images, videos and animations. More info on these in the Media

chapter.

Image optimization

Images represent a huge part of requests and page weight. Let’s see what we can do to mitigate

this—in addition to avoiding stock images that bring you no additional information. As already

mentioned, you should have already removed unnecessary images.

For a closer look on the relative benefits you can expect from possible technical optimizations,

there is a post on the HTTP Archive that compares them771. Since you can more and more easily

rely on native HTML (and sometimes CSS) for this, you should implement all of them.

Format (WebP/AVIF)

WebP is already widely supported772 and one of the best formats you can find for your images.

Its compression is impressive and results in less data being transferred and processed. In

addition to this, it enjoys wide support. AVIF should be even better but it might be wise to wait

until it has reached a wider adoption from browsers773. Until then, just make sure you use the

WebP format for your images. Your icons should be in optimized SVG774 and you could even

include them directly in the HTML to avoid additional requests.

771. https://discuss.httparchive.org/t/state-of-the-web-top-image-optimization-strategies/1367
772. https://caniuse.com/webp
773. https://caniuse.com/avif
774. https://jakearchibald.github.io/svgomg/

Part III Chapter 20 : Sustainability

2022 Web Almanac by HTTP Archive 627

https://discuss.httparchive.org/t/state-of-the-web-top-image-optimization-strategies/1367
https://caniuse.com/webp
https://caniuse.com/avif
https://jakearchibald.github.io/svgomg/

As of today, only 10% of the websites use WebP, which is already better than last year775 but far

from ideal. This could be a huge opportunity and help reduce the overall weight of images. AVIF

is even further behind, only slightly over 0% but we can hope this figure will rise in the coming

years.

Responsiveness, size, and quality

As a growing proportion of users browse the web on various devices (mostly smartphones but

also game consoles, smart watches, tablets, etc), you should aim to deliver images of the right

size—and weight—for each of them. After all, this is one of the major topics of responsive design

and developers have lots of tools to automate this.

Also remember that you often don’t need a quality of more than 85% since the human eye won’t

detect a difference above this. Reducing quality to 85% will help reduce the size of images.

Figure 20.10. Image formats in use

775. https://almanac.httparchive.org/en/2021/media#format-adoption

Part III Chapter 20 : Sustainability

628 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/sustainability/image-formats-in-use.png
https://almanac.httparchive.org/static/images/2022/sustainability/image-formats-in-use.png
https://almanac.httparchive.org/en/2021/media#format-adoption

Around 34% of the websites use the srcset attribute, which is a great way to integrate

responsive images. The <picture> element works great too and is already found on 7% of the

websites. Being optimistic, we could focus on the fact that responsive images are gaining

ground each year, even if it’s not used on a majority of websites. However, responsive design

has been around for quite some time and this should be more widely spread.

Lazy-loading

An easy way to get a faster first load is to load images progressively: only load what you need

when you need it. This is done through lazy-loading and most browsers now support this

natively776. Not all users will scroll your page in its entirety so you should avoid loading images

that might never be seen by the current user. As such, this is a quick win for sustainability and

your users.

Figure 20.11. Responsive image types

776. https://caniuse.com/loading-lazy-attr

Part III Chapter 20 : Sustainability

2022 Web Almanac by HTTP Archive 629

https://almanac.httparchive.org/static/images/2022/sustainability/responsive-image-types.png
https://almanac.httparchive.org/static/images/2022/sustainability/responsive-image-types.png
https://caniuse.com/loading-lazy-attr
https://caniuse.com/loading-lazy-attr

On this graph, we see that native lazy-loading has been more and more widely adopted since its

implementation. Around one our of four websites use it. Some might still be using JavaScript

libraries to implement this behavior and do not appear on this graph. Switching to native lazy-

loading could be a great opportunity for them to slightly reduce requests and avoid some

JavaScript processing.

A quick note on iframes: lazy-loading could also be natively applied to iframes, although, for

sustainability reasons, you should consider avoiding iframes altogether. Most of the time,

facade777 is the good pattern for you, whether you want, for example, to include embedded

videos or interactive maps. Directly including external content on your page has a bad habit of

increasing the weight and requests of the page and often causes accessibility issues.

Video

Videos are some of the most impactful resources778 you can include on a website. More info on

these in the Media chapter. To integrate third-party videos, you should use facades779. On top of

this, you should set them up wisely780. For instance, avoid preloading and autoplay. You could

also learn how to quickly reduce the size of your videos781.

Figure 20.12. Native lazy loading usage

777. https://web.dev/third-party-facades/
778. https://theshiftproject.org/en/article/unsustainable-use-online-video/
779. https://web.dev/third-party-facades/
780. https://www.smashingmagazine.com/2021/02/optimizing-video-size-quality/
781. https://theshiftproject.org/en/guide-reduce-weight-video-5-minutes/

Part III Chapter 20 : Sustainability

630 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/sustainability/native-lazy-loading-usage.png
https://almanac.httparchive.org/static/images/2022/sustainability/native-lazy-loading-usage.png
https://web.dev/third-party-facades/
https://theshiftproject.org/en/article/unsustainable-use-online-video/
https://web.dev/third-party-facades/
https://www.smashingmagazine.com/2021/02/optimizing-video-size-quality/
https://theshiftproject.org/en/guide-reduce-weight-video-5-minutes/

Preload

Automatically preloading videos (or audio files) involves retrieving data that might not be useful

for all users. On a page including such content and having many visitors, it can quickly add up.

As such, preloading should be avoided and only done on user interaction.

Looking at this graph, one should keep in mind that the preload attribute only has 3 possible

values: none , auto and metadata (default). Using the preload attribute with no value or

with an erroneous value might be the same as using the metadata value. It still involves

loading as much as 3% of the video to get these metadata and can thus be quite impactful.

none is still the best way to go for sustainability. But you have to keep in mind that this is only

a hint for the browser. In the end, the browser has its own way of handling the preloading of the

video and it might not fit with what you had in mind.

For more on this, you should check the article from Steve Souders (2013)782 and another one

from web.dev (2017)783. Even if you can configure your browser or device to save data, video

preload is something that browsers should handle more sustainable by default.

Figure 20.13. Video preload usage

782. https://www.stevesouders.com/blog/2013/04/12/html5-video-preload/
783. https://web.dev/fast-playback-with-preload/

Part III Chapter 20 : Sustainability

2022 Web Almanac by HTTP Archive 631

https://almanac.httparchive.org/static/images/2022/sustainability/video-preload-usage.png
https://almanac.httparchive.org/static/images/2022/sustainability/video-preload-usage.png
https://www.stevesouders.com/blog/2013/04/12/html5-video-preload/
https://web.dev/fast-playback-with-preload/
https://web.dev/fast-playback-with-preload/

Autoplay

Most of the considerations we made on preload also apply with autoplay. In addition to the fact

that it involves loading data and displaying content to users who might not be interested, it can

cause accessibility issues. For some users, unsolicited moving pictures and/or sound might be

bothersome and hinder their browsing experience.

Also, this attribute can override your preload setting since autoplaying requires loading

(obviously).

More than half of the websites don’t use autoplay, which is great. But this is a Boolean attribute

so having it, even with an empty value (or wrong value), triggers autoplay. For all the reasons

mentioned above, this should be avoided for both sustainability and accessibility.

Animations

For accessibility, moving and blinking parts should be avoided unless users have some control

on them. Regarding sustainability, animations are costly: they tend to increase the battery

discharge speed and CPU consumption—which might in the end reduce the autonomy of a

smartphone. They also involve retrieving and running some code, which might delay rendering.

The (infamous) case of carousel is documented on these pages:

Figure 20.14. Video autoplay usage

Part III Chapter 20 : Sustainability

632 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/sustainability/video-autoplay-usage.png
https://almanac.httparchive.org/static/images/2022/sustainability/video-autoplay-usage.png

• Why you shouldn’t use them784

• What can be done instead785

If you must use animations you should also avoid GIF786 or at least convert them to optimized

videos, since animated GIFs can get really heavy.

Favicon and error pages

By default, your browser will look for a favicon upon arriving on a website. If it’s missing, most

servers will return a 404 error and the HTML for the 404 page of said website. So, some things

to consider:

• Don’t forget your favicon—and cache it!

• Don’t forget to optimize the HTML of your 404 page to make it as light as possible

or, even better, configure your server to make sure it only sends some text rather

than the HTML of your 404 page.

For more details on all this, see this article from Matt Hobbs787.

Optimizing external content

One of the great things about web development is that you can easily rely on external content:

frameworks and libraries but also content. However, just because it is easy to implement

doesn’t make it useful or any less impactful. For each external element that you want to add, try

to ponder whether it is really needed by the users. If so, then try to integrate it as efficiently as

possible. And also keep in mind that each piece of content comes at a cost—requests and

additional code, but also sometimes vulnerabilities or at least increasing the attack surface.

Third parties

Third-party requests account for 45% of all requests, with 94% of mobile websites having at

least one identifiable third-party resource. This is not surprising, given that third-party code is

often used to deliver complex functionality on web pages. It also serves as a quick fix for

including cross-platform content onto a website.

784. https://shouldiuseacarousel.com/
785. https://www.smashingmagazine.com/2022/04/designing-better-carousel-ux/
786. https://web.dev/efficient-animated-content/
787. https://nooshu.com/blog/2020/08/25/you-should-be-testing-your-404-pages-web-performance/

Part III Chapter 20 : Sustainability

2022 Web Almanac by HTTP Archive 633

https://shouldiuseacarousel.com/
https://www.smashingmagazine.com/2022/04/designing-better-carousel-ux/
https://web.dev/efficient-animated-content/
https://nooshu.com/blog/2020/08/25/you-should-be-testing-your-404-pages-web-performance/

With third-party requests making up such a large portion of requests on the web, it is

reassuring to see that the vast majority of these requests are being served from green hosting

providers.

The chart above shows the percentage of third-party requests served from green hosting

providers. It’s interesting to note that the trend here is opposite to green website hosting. One

might expect this to be the case, however, since the top five most requested third parties are all

Google entities (fonts, analytics, accounts, tag manager, and ads). URLs associated with these

entities are almost entirely listed as served from green hosting.

Making third-party requests more sustainable

As we have seen, most third-party requests are being served from green hosting. However,

there is still room for improvement, especially for higher ranked sites. If you are interested in

the sustainability of third-party services used on your website, Are my third parties green?788 is

Figure 20.15. Percent of third-party requests on mobile pages that are served from green hosting.

91%

Figure 20.16. Percents of green third party requests

788. https://aremythirdpartiesgreen.com/

Part III Chapter 20 : Sustainability

634 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/sustainability/green-third-party-requests.png
https://almanac.httparchive.org/static/images/2022/sustainability/green-third-party-requests.png
https://aremythirdpartiesgreen.com/

an online testing tool, directory, and API that can help you get started. For the sake of

transparency, it should be noted that this tool was created by one of the chapter authors.

Beyond hosting, we should also be considering the impact of data transfer for third parties.

While providers of third-party services make it relatively easy to integrate their content on

another website, that doesn’t mean it is always optimized to reduce the amount of data being

transferred. For example, the Third Parties chapter of the 2022 Almanac uncovered that:

In the case of fonts, self-hosting and subsetting are two techniques that, when combined, can

help reduce this waste. However, most third-parties come in the form of scripts. These incur a

cost when transferring data over the network, but also utilize processing power on the end-

user’s device. For these, we can reduce their impact by loading them “just in time”.

This pattern is known as Import on Interaction, which sees static facades used in place of

interactive content when the page first loads. The content then gets requested and loaded just

before the user interacts with an element. This can result in less data being transferred initially,

and also reduces the processing required when viewing the page—especially if the script is

never requested.

Implementing technical optimizations

We have just seen a lot about the sustainability of the content of websites—even external

content. This leaves us with all the other technical optimizations. There is a lot to be done here

too and most of this could and should be automated. Once again, this might intersect with some

other chapters from the Web Almanac but the idea is to offer you a whole chapter about

sustainability and how to make websites more sustainable.

The web performance experts have done a lot in the field of technical optimizations so there is a

lot to learn from them. Just keep in mind that some of their best practices don’t necessarily

make your websites more sustainable. However, making things lighter and simpler is great for

sustainability AND performance—not to mention accessibility.

JavaScript

There is a lot to be said about JavaScript and how it helped the web grow (and how it

sometimes slows it down). Let’s stick to some quick wins: easy to implement and great for

sustainability. If you want to learn more about all this, you should check the JavaScript chapter.

Google fonts are the most-popular third party on mobile devices being used by

62.6% of all websites. The CSS they provide is not minified. The data shows the

average page which has Google Fonts could save 13.3 KB from minifying it. "
Part III Chapter 20 : Sustainability

2022 Web Almanac by HTTP Archive 635

https://www.patterns.dev/posts/import-on-interaction/

Minification

Minifying JavaScript involves removing unnecessary characters for the browser, making your

files lighter.

On this graph, we notice that most websites already do a great job at minifying JavaScript and

that benefits from minifying are not so big. However, why not do it since it’s easy to implement

and always beneficial?

Including as little as possible directly in HTML

Inlining code is bad practice, even more for sustainability. Making your HTML heavier to load

and process is not something you want. Inlining JavaScript might also make it sometimes more

difficult to optimize (and maintain).

Figure 20.17. Unminified JavaScript savings

Part III Chapter 20 : Sustainability

636 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/sustainability/unminified-javascript-savings.png
https://almanac.httparchive.org/static/images/2022/sustainability/unminified-javascript-savings.png

Almost one third of websites inline JavaScript. This is also something you see a lot with CMS.

CSS

CSS could be a great lever for sustainability, especially if you want to limit the number of images

on your website or create some animations as mentioned earlier in this chapter. You can find

documentation on how to write efficient CSS—and should definitely look for this—but we’ll

stick to standard optimizations that should be implemented everywhere. If you want to learn

more about all this, see the CSS chapter.

Minification

As with CSS, minifying JavaScript involves removing unnecessary characters for the browser,

making your files lighter.

Figure 20.18. Script usage

Part III Chapter 20 : Sustainability

2022 Web Almanac by HTTP Archive 637

https://almanac.httparchive.org/static/images/2022/sustainability/script-usage.png
https://almanac.httparchive.org/static/images/2022/sustainability/script-usage.png

Unminified CSS is absent from most of the websites and the potential gains appear really light.

However, it is still beneficial to minify CSS and this should be implemented on all websites.

Including as little as possible directly in HTML

As with JavaScript, inlining CSS could prove detrimental for the size of your HTML file and for

the performance of your website. This is often found on websites built with CM and those

relying on the Critical CSS method789.

Figure 20.19. Unminified CSS savings

789. https://web.dev/extract-critical-css/

Part III Chapter 20 : Sustainability

638 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/sustainability/unminified-css-savings.png
https://almanac.httparchive.org/static/images/2022/sustainability/unminified-css-savings.png
https://web.dev/extract-critical-css/

On this graph, it appears that a quarter of websites still use inline CSS. For sustainability

reasons, this should be avoided.

CDN

Implementing a CDN can help make your website more sustainable. It helps get your assets as

close to your users as possible and sometimes automatically helps optimize them.

Figure 20.20. Style usage

Part III Chapter 20 : Sustainability

2022 Web Almanac by HTTP Archive 639

https://almanac.httparchive.org/static/images/2022/sustainability/style-usage.png
https://almanac.httparchive.org/static/images/2022/sustainability/style-usage.png

Despite these obvious benefits, more than 70% of websites still don’t use a CDN.

Text compression

Compressing the text assets for a website790 could require some (easy) server-side configuration.

Text files such as HTML, JavaScript and CSS are then compressed (in Brotli or Gzip format),

which can easily make them lighter.

Figure 20.21. Cdn usage on the web

790. https://web.dev/uses-text-compression/

Part III Chapter 20 : Sustainability

640 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/sustainability/cdn-usage.png
https://almanac.httparchive.org/static/images/2022/sustainability/cdn-usage.png
https://web.dev/uses-text-compression/

However, a quarter of websites still don’t implement text compression. Gzip is unanimously

supported so feel free to use it.

Caching

Caching791 is one of the killer features of browsers but not always easy to implement flawlessly.

Caching is great for sustainability since it prevents browsers from requesting all resources

every time.

Figure 20.22. Compression used on text resources

791. https://web.dev/uses-long-cache-ttl/

Part III Chapter 20 : Sustainability

2022 Web Almanac by HTTP Archive 641

https://almanac.httparchive.org/static/images/2022/sustainability/compression-used-on-text-resources.png
https://almanac.httparchive.org/static/images/2022/sustainability/compression-used-on-text-resources.png
https://web.dev/uses-long-cache-ttl/

On this page, we see that more than a quarter of websites don’t use caching at all. This is a huge

loss for sustainability and performance and—for obvious reasons, users.

SEO and sustainability

Similar to accessibility, estimating emissions specifically related to search engine optimization

efforts is challenging. However, SEO does have significant sustainability implications:

• Keyword research, a foundation of SEO, helps authors align the content they create

with specific target user needs.

• Structured data helps search engines better understand page content, allowing

them to serve more relevant information in results.

• Search-optimized content is typically easier to find, quicker to skim due to its

formatting, and clearly written, making it easier to understand.

• Analyzing content performance over time (bounce rates, scroll depth, etc.) helps

authors improve the content they have published so it better serves user needs (and

improves search results). Depending on tools used for analysis, privacy implications

may arise.

Figure 20.23. Cache control header usage

Part III Chapter 20 : Sustainability

642 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/sustainability/cache-control-header-usage.png
https://almanac.httparchive.org/static/images/2022/sustainability/cache-control-header-usage.png

Collectively, these efforts reduce the amount of time a user spends searching for information

that is relevant to their needs. This reduces their energy use.

Conversely, search engines often reward long-form content like tutorials and guides, which can

use more bandwidth (and energy) than listicles or other short-form content. As with many

sustainability-related concepts, the key is finding the right balance between creating useful and

compelling content and optimizing for performance and efficiency.

Many years ago, Google noted that the energy required for a single search could power a 60W

light bulb for 17 seconds. In 2022, more research is needed to quantify the specific

environmental impact of search engine optimization. Still, the sustainability implications of

good SEO work are clear: optimized content reduces end user energy consumption (not to

mention frustration).

Sustainable data and content management

As noted above, structured data helps search engines better understand web pages to produce

more relevant results. However, our collective relationship with data has sustainability

implications beyond SEO. For example:

• Unused, duplicated, outdated, or incomplete data and poorly managed content use

up server space, cause errors for users, and require energy to host and maintain.

• Regular content audits792 and a clear content governance plan793 can help you

measure content performance and prune outdated or underperforming content

over time to keep your website lean, efficient, and well-organized.

• While third-party services may only inject a small snippet of code into an individual

web page, the data they collect can be very resource-intensive. A single digital ad,

for instance, can produce as much as 323 tons of CO2e794.

• Data tool makers—like marketing automation, email marketing, and CRM

systems—often focus their product management efforts on collecting data rather

than optimizing it. In fact, some of these platforms charge for data use, making their

business models at odds with sustainability principles.

• Similarly, many organizations don’t have clear data disposal policies nor do they

train their teams on effective data management. This is not only a sustainability

issue but a privacy and security issue as well.

792. https://www.mightybytes.com/blog/how-to-run-a-content-audit/
793. https://www.mightybytes.com/blog/content-governance/
794. https://www.businessinsider.com/making-net-zero-possible-the-hidden-impact-of-digital-ads-2022-7

Part III Chapter 20 : Sustainability

2022 Web Almanac by HTTP Archive 643

https://www.mightybytes.com/blog/how-to-run-a-content-audit/
https://www.mightybytes.com/blog/content-governance/
https://www.businessinsider.com/making-net-zero-possible-the-hidden-impact-of-digital-ads-2022-7

These are just several examples from a long list of sustainability issues associated with poorly

managed content and data. Organizations should regularly audit their content and data

management practices to improve efficiency and reduce resource use795.

Popular frameworks, platforms, and CMSs

Online platforms and CMS tools help lower the barrier to entry for those wishing to publish or

do business on the web. Likewise, development frameworks and site generators allow those

who build for the web to get started on projects faster, and enable them to take advantage of

defaults and solutions that solve common development problems.

The charts below show the median page weight of the top five most popular eCommerce

platforms, CMS tools, and site generator tools.

Figure 20.24. Median kilobytes by ecommerce

795. https://www.mightybytes.com/blog/design-a-sustainable-data-strategy/

Part III Chapter 20 : Sustainability

644 2022 Web Almanac by HTTP Archive

https://www.mightybytes.com/blog/design-a-sustainable-data-strategy/
https://almanac.httparchive.org/static/images/2022/sustainability/median-kilobytes-by-ecommerce.png
https://almanac.httparchive.org/static/images/2022/sustainability/median-kilobytes-by-ecommerce.png

Of interest here is that all but three of the platforms/tools listed have a median mobile page

weight that is less than the overall median (2,019 KB). These are all in the static site generator

category, and especially in the case of Hugo and Jekyll, it can likely be attributed to the kinds of

websites these tools are used to create—namely mostly blog and textual content, with much

less reliance on JavaScript. It should also be noted that SSGs are often used with performance

Figure 20.25. Median kilobytes by CMS

Figure 20.26. Static site generators median KB

Part III Chapter 20 : Sustainability

2022 Web Almanac by HTTP Archive 645

https://almanac.httparchive.org/static/images/2022/sustainability/median-kilobytes-by-cms.png
https://almanac.httparchive.org/static/images/2022/sustainability/median-kilobytes-by-cms.png
https://almanac.httparchive.org/static/images/2022/sustainability/static-site-generator-median.png
https://almanac.httparchive.org/static/images/2022/sustainability/static-site-generator-median.png

in mind, which makes them more likely to be further optimized than the average website using a

CMS only for commodity reasons.

Another area of interest when looking across the three segments is that some show a bigger

gap between desktop and mobile page size. On closer inspection, this seems to be largely down

to image optimizations that some platforms seem to be applying for mobile devices. To highlight

this, let’s look at the CMS category, where Wix shows a big difference between desktop and

mobile size compared to the other popular platforms.

Figure 20.27. Median kilobytes by CMS, device, and resource type

CMS Device HTML JavaScript CSS Image Fonts

WordPress Desktop 40 521 117 1,202 166

WordPress Mobile 37 481 115 1,100 137

Drupal Desktop 23 416 68 1,279 114

Drupal Mobile 23 406 66 1,158 92

Joomla Desktop 26 452 86 1,690 104

Joomla Mobile 22 401 83 1,504 82

Wix Desktop 123 1,318 86 647 197

Wix Mobile 118 1,215 9 290 148

Squarespace Desktop 27 997 89 1,623 214

Squarespace Mobile 27 990 89 1,790 202

Part III Chapter 20 : Sustainability

646 2022 Web Almanac by HTTP Archive

The table and charts above highlights that Wix, as part of their platform, appear to be applying

much more aggressive mobile image optimizations. A similar pattern is seen in the site

generator segment, especially when looking at frameworks like Next.js and Nuxt.js.

Figure 20.28. Median kilobytes by cms and resource type (desktop)

Figure 20.29. Median kilobytes by cms and resource type (mobile)

Part III Chapter 20 : Sustainability

2022 Web Almanac by HTTP Archive 647

https://almanac.httparchive.org/static/images/2022/sustainability/median-kilobytes-by-cms-and-resource-type-desktop.png
https://almanac.httparchive.org/static/images/2022/sustainability/median-kilobytes-by-cms-and-resource-type-desktop.png
https://almanac.httparchive.org/static/images/2022/sustainability/median-kilobytes-by-cms-and-resource-type-mobile.png
https://almanac.httparchive.org/static/images/2022/sustainability/median-kilobytes-by-cms-and-resource-type-mobile.png

This seemingly small insight helps to capture the important role that platforms and frameworks

can play in helping deliver more sustainable websites. By applying sensible defaults, platform

developers and framework authors can help developers leverage their tools to make sites that

are green by default796.

Conclusion

This is the first Web Almanac chapter ever on sustainability and quite a symbolic year to do so

with all the droughts, heat waves and other climatic events all over the world. There’s definitely

something wrong and it’s getting harder and harder to look the other way. The web plays a part

in this and it’s a priority to help everyone understand its environmental impacts. Given all the

accessible data from HTTP Archive, this chapter is a unique occasion to gather metrics and take

a step back to look at the state of the web regarding sustainability.

Based on available metrics, we see that some best practices are already being adopted and

slowly spreading. However, there is still a lot to be done. Some of these actions are easy to

implement but could still prove really beneficial. Also, both best practices and

measures—preferably on real devices—are essential for continuous sustainability

improvement.

It’s up to everyone to gain awareness about sustainability, discover the best practices and

implement them. It’s essential to spread the word about all this and generate discussion. As

with accessibility, this concerns all of us and we have everything we need to make the web more

sustainable.

Most of what we have seen here shows what developers can do to make websites more

sustainable. But we can and must go further. We have to reach for sobriety through design.

Project managers need to make sustainability a priority and make sure that this is not

something that can always be handled later. Companies need to think about making their

business models more sustainable.

With this chapter, we hope to make you more aware about web sustainability, help you

understand how sustainable websites are today and give you some tools and clues to handle

this topic and spread the word.

Actions you can take

The sustainability of websites needs to be taken into account. As of today, there is still a lot to

be done. If needed, you should start with some of the resources recommended above to gain

796. https://screenspan.net/blog/green-by-default/

Part III Chapter 20 : Sustainability

648 2022 Web Almanac by HTTP Archive

https://screenspan.net/blog/green-by-default/

awareness on this subject —and spread the word.

To get started on an existing website, you can:

• Optimize images (WebP + lazy-loading + responsiveness + cache + quality) and

make sure this is done automatically

• Avoid implementing videos. If they are necessary, do not autoplay nor preload them

• Look for a more sustainable hosting

You should then:

• Clean up your 3rd-parties.

• Optimize your CSS and JavaScript starting with the easy technical optimizations

and automating them.

• Review the design to make your page more sober (less visual content, less

animations, etc) and streamline the user journey(s)

Making your websites more sustainable is part of continuous improvement. Not everything

can—or should—be done at once. Rely on best practices and measurements to make sure you’re

going the right way. Whether you’re working on an existing website or creating a new one from

scratch, keep everyone in the team involved or at least aware of this topic.

Some of your users would love to know that your website is more sustainable and how you

achieved it. And all of them would benefit from this.

With special thanks to Tom Greenwood797, Hannah Smith798, Eugenia Zigisova799, Rick Viscomi800 and all

the other wonderful people who made this chapter possible.

797. https://www.wholegraindigital.com/team/tom-greenwood/
798. https://twitter.com/hanopcan
799. https://twitter.com/jevgeniazi
800. https://twitter.com/rick_viscomi

Part III Chapter 20 : Sustainability

2022 Web Almanac by HTTP Archive 649

https://www.wholegraindigital.com/team/tom-greenwood/
https://twitter.com/hanopcan
https://twitter.com/jevgeniazi
https://twitter.com/rick_viscomi

Authors

Laurent Devernay

@ldevernay ldevernay https://ldevernay.github.io/

Laurent Devernay is a Digital Sobriety Expert for Greenspector801. You can find him

blogging on his own802 or for this company803 but almost always about web

sustainability. Which makes him either an enthusiast or a monomaniac.

Gerry McGovern

gerrymcgovernireland

Gerry has published eight books. His latest, World Wide Waste804, examines the

impact digital is having on the environment. He developed Top Tasks805, a research

method which helps identify what truly matters to people.

Tim Frick

@timfrick timfrick https://www.mightybytes.com/

Tim Frick806 started his digital agency Mightybytes807 in 1998 to help nonprofits,

social enterprises, and purpose-driven companies solve problems, amplify their

impact, and drive measurable business results. Mightybytes is a Certified B Corp808

that uses business for good. Certified B Corps meet the highest verified standards

of social and environmental performance, transparency, and accountability. Tim is

the author of four books, including Designing for Sustainability: A Guide to Building

Greener Digital Products and Services809. A seasoned public speaker, he regularly

presents at conferences and offers workshops on sustainable design, measuring

impact, and problem solving in the digital economy. He has also served on the

boards of several nonprofit organizations, including Climate Ride810, B Local

Illinois811, and the Alliance for the Great Lakes812.

801. https://greenspector.com/en/home/
802. https://ldevernay.github.io/
803. https://greenspector.com/en/blog-2/
804. https://gerrymcgovern.com/books/world-wide-waste/
805. https://gerrymcgovern.com/books/top-tasks-a-how-to-guide/
806. https://www.mightybytes.com/teammember/tim-frick/
807. https://www.mightybytes.com/
808. https://www.mightybytes.com/b-corporation/
809. https://www.oreilly.com/library/view/designing-for-sustainability/9781491935767/
810. https://www.climateride.org/
811. https://www.illinoisbcorps.org/
812. https://greatlakes.org/

Part III Chapter 20 : Sustainability

650 2022 Web Almanac by HTTP Archive

https://twitter.com/ldevernay
https://github.com/ldevernay
https://ldevernay.github.io/
https://greenspector.com/en/home/
https://ldevernay.github.io/
https://greenspector.com/en/blog-2/
https://github.com/gerrymcgovernireland
https://gerrymcgovern.com/books/world-wide-waste/
https://gerrymcgovern.com/books/top-tasks-a-how-to-guide/
https://twitter.com/timfrick
https://github.com/timfrick
https://www.mightybytes.com/
https://www.mightybytes.com/teammember/tim-frick/
https://www.mightybytes.com/
https://www.mightybytes.com/b-corporation/
https://www.oreilly.com/library/view/designing-for-sustainability/9781491935767/
https://www.oreilly.com/library/view/designing-for-sustainability/9781491935767/
https://www.climateride.org/
https://www.illinoisbcorps.org/
https://www.illinoisbcorps.org/
https://greatlakes.org/

Part IV Chapter 21

Page Weight

Written by Jamie Indigo and Dave Smart
Reviewed by Chris Steele
Analyzed by Danielle Rohe

Introduction

We shall show that over the last ten years, mobile page weight has increased 594%. In this time,

we’ve seen performance-enhancing technologies emerge to buffer the impact. More recent

performance measuring methodologies like Core Web Vitals eschew page weight as a factor.

While the Google-driven Core Web Vitals initiative shifts the perception of performance to

how quickly above-the-fold content because visible and usable, the large network payloads are

still correlated to long load times.

Many building websites have the luxury of high-speed desktop connections and don’t

experience the limited, and often expensive mobile network access.

According to the International Telecommunication Union’s Global Connectivity Report813, 66%

of global households have internet access. In low-income countries, only 22% have access

compared to 91% in high-income countries. Often in rural areas of developing countries, only

813. https://www.itu.int/itu-d/reports/statistics/2022/05/30/gcr-chapter-2/

Part IV Chapter 21 : Page Weight

2022 Web Almanac by HTTP Archive 651

https://www.itu.int/itu-d/reports/statistics/2022/05/30/gcr-chapter-2/

3G is available despite 4G being the minimal connection for meaningful connectivity.

In more than half of the world’s low- and middle-income countries, residents pay more than 2%

of their average monthly income for 1GB of mobile broadband data814.

Page weight still matters. Whether you’re experiencing a weak network connection at an

inopportune moment or live in a market where access to the internet is charged by the

megabyte, inflated page weight decreases the availability of information.

What is page weight?

Page weight refers to the byte size of a web page. As it’s no longer 1994, a web page is rarely

only the HTML of the URL viewed in a browser’s address bar. Rather, a web page as viewed and

rendered in a browser uses specific elements and assets.

This is why page weight is inclusive of all assets used to create the page. These include:

• The HTML that makes up the page itself

• Images and other media (video, audio, etc) embedded into the page

• Cascading Style Sheets (CSS) used for styling the page

• JavaScript to provide interactivity

• Third-Party resource containing one or more of the above.

Each resource adds to the byte of the page as well as computational resources involved in the

transmission, processing, and rendering of the page. Some resources like scripts have additional

overhead in the form of CPU usage as each must be downloaded, parsed, compiled, and

executed.

As page weight balloons, valiant efforts and methods have been proposed to mitigate the

impact. Still, the machinations of page weight’s complex relationship to resource allocation is

invisible to most users.

Let’s inspect closer the three impacts of page weight for resources: storage, transmission, and

rendering.

814. https://digital-world.itu.int/ministerial-roundtable-cutting-the-cost-can-affordable-access-accelerate-digital-transformation/

Part IV Chapter 21 : Page Weight

652 2022 Web Almanac by HTTP Archive

https://digital-world.itu.int/ministerial-roundtable-cutting-the-cost-can-affordable-access-accelerate-digital-transformation/
https://digital-world.itu.int/ministerial-roundtable-cutting-the-cost-can-affordable-access-accelerate-digital-transformation/

Storage

Ultimately every resource that goes to make up a web page needs to be stored somewhere. For

a website, that often means multiple places, all of which bring their own costs and overheads.

Storage on the web server tends to be relatively low cost when on disk storage, and relatively

scalable. It’s perhaps a little more expensive if the web server is serving from memory. These

resources might also be duplicated on intermediate caches and CDNs.

That’s just the source, ultimately the resources will need to be stored in some form on the client

side too, where storage is potentially more limited, especially for mobile devices. Serving huge,

bloated files may well fill the user’s cache, pushing out other useful resources.

Unoptimized images, at resolutions better suited to print media at multiple megabytes, and

huge video files can still be routinely found.

A lot of this can be mitigated by picking the right formats and codecs for media and being

mindful of size as well as quality. Services like Squoosh815 are great for getting the most out of

your images at the smallest possible size, and there are specialist image CDNs816 that can

automate much of this.

Media, although regularly the weightiest elements, are not the only place savings can be

made—text resources can be compressed and minified too.

Putting your resources on a diet has never been easier!

Transmission

When you visit a web page for the first time, all the resources that the page requests need to be

transmitted across the internet from the server to your device.

That can be across a superfast, high monthly usage broadband connection, but it could be from

a slow, expensive, capped mobile connection, or even satellite.

The larger the page weight, the longer this will take. It can also be more expensive for those

users with lower-capped data plans.

There are optimizations with things like preconnect , preload , and Priority Hints817 that can

manage the order things are loaded and help perceived load times, but ultimately the resources

still need to be transmitted and received, and the best optimization of all is serving smaller

815. https://squoosh.app/
816. https://web.dev/image-cdns/
817. https://web.dev/priority-hints/

Part IV Chapter 21 : Page Weight

2022 Web Almanac by HTTP Archive 653

https://squoosh.app/
https://web.dev/image-cdns/
https://web.dev/uses-rel-preconnect/
https://web.dev/uses-rel-preconnect/
https://web.dev/preload-critical-assets/
https://web.dev/preload-critical-assets/
https://web.dev/priority-hints/

resources.

Rendering

The fetching of resources is just the first step of getting a website painted on-screen and

viewable by the user. To do that, a web browser needs to render the page, using all the relevant

resources.

Page weight plays an important role here—in a number of ways. First, if the transmission is

slow—because the files are large—the longer it is until the browser gets the chance to even

start working on these to render.

Large files have an effect even after they are received over the network. Larger files take more

processing power and memory to be read, processed, and rendered. This in turn leads to longer

delays from some—or even all—of the content from being displayed to the user. The longer the

delay, the more likely a user is to abandon the page and seek the information from a more

responsive site.

JavaScript is of special concern here, as it not only needs to be downloaded: it also needs to be

parsed and executed.

Huge files can have an ongoing performance penalty, even if your user does wait for them to be

initially downloaded. They can eat up all client-side resources available to the browser, leading

to slow performance, or even crashing the browser entirely.

Modern, high-end smartphones, laptops, and tablets might have the power to handle these

large files without noticeable performance issues but older or lower-powered devices may well

struggle. These are also often the same devices with slow and potentially expensive mobile

connections—leading to a ’double penalty’ for people who potentially need simple, reliable

access the most.

What are we shipping?

Prior to the introduction of HTML 2.0 in 1995, page weights were predictable and manageable.

The only asset to weigh was the HTML. RFC1866818 introduced the tag. Page weight

dramatically increased once images could be included on web pages.

Further versions of the HTML spec added even more features that could add weight—like

external CSS, allowing consistent styling across pages.

818. https://www.rfc-editor.org/rfc/rfc1866

Part IV Chapter 21 : Page Weight

654 2022 Web Almanac by HTTP Archive

https://www.rfc-editor.org/rfc/rfc1866

1996 saw the first emergence of JavaScript, 2005 brought XHR, and 2006 saw the birth of

libraries like jQuery, followed by frameworks like Angular, React, Vue, and many more, fully

unleashing the leviathan in waiting: JavaScript.

The swell of page weight brought a proliferation of file types intended to improve performance

while retaining functionalities. Examining them by asset type will highlight the trade-offs.

Images

Images are the poster child for balance between performance-enhancing technologies and

asset byte size. These static files serve as resources to build out and render web pages. The

increasingly visual nature of the web ensures the media type will retain its title as most

ubiquitous asset.

Older formats like PNG, JPEG, and GIF enjoy their legacy of broader “historical” browser

support. Performance-focused file type WebP819 gained significant browser support and is now

available to 97% of global users820.

To delve into the findings and implications of image use on the web, refer to the Media chapter.

JavaScript

JavaScript is the most popular client-side scripting language on the web. We see that 98% of

websites use it to create interactive online content—and other sources agree it’s that high821.

While magnificent when used in moderation, the intoxicating allure of JavaScript can also lead

to serious performance, search engine optimization, and user experience issues.

Refer to JavaScript chapter for detailed insights into the internet’s favorite monkey paw.

Third-party services

A page’s weight is not limited to the assets hosted on the origin. Third-party resources

requested by the page pile onto the weight in the form of analytics, chatbots, forms, embeds,

analytics, A/B testing tools, and data collection.

According to the Third Parties chapter, 94% of all websites on mobile devices use at least one

third-party resource! Each of these contributes to the byte size of page weight.

819. https://developers.google.com/speed/webp
820. https://caniuse.com/webp
821. https://w3techs.com/technologies/details/cp-javascript

Part IV Chapter 21 : Page Weight

2022 Web Almanac by HTTP Archive 655

https://developers.google.com/speed/webp
https://caniuse.com/webp
https://w3techs.com/technologies/details/cp-javascript

Other assets

The basic building blocks of the web have remained relatively unchanged for over 25 years. As

the richness of web experiences increases, so does the use of fonts and videos.

These increases are in step with the other file weight increases with a notable expectation to

the 100th percentile.

In 2021, the 100th percentile of mobile sites used 20,452 kilobytes of font files. In 2022, these

outliers swelled to 110 megabytes. This 540% growth was not seen in the year-over-year

comparison for desktop which sat at 66,257 kilobytes in 2021 and 68,285 in 2022.

However, the 100th percentile—while fun to investigate—will always show the worst of the

web. At the 90th percentile, the mobile font weight was less extreme—though still large—401

kilobytes.

More insights into the typographical nature of the web can be found in the Fonts chapter.

Page weight by the numbers

Now we know what we are primarily interested in when considering page weight, let’s dive into

the details.

Requests volume

It’s not only the total number of bytes requested—the number of requests made to create a

page can affect the performance of a page. We, therefore, consider this as part of page weight.

Figure 21.1. The largest font use on mobile page.

110 MB

Part IV Chapter 21 : Page Weight

656 2022 Web Almanac by HTTP Archive

The median page (50th percentile) makes 76 requests for desktop page loads, and 70 on mobile

page loads. At all percentiles the difference between desktop and mobile is minimal.

Last year’s median desktop request was 74, so no significant difference over last year.

Figure 21.2. Distribution of requests.

Figure 21.3. Median number of requests by content type.

Part IV Chapter 21 : Page Weight

2022 Web Almanac by HTTP Archive 657

https://almanac.httparchive.org/static/images/2022/page-weight/distribution-of-requests.png
https://almanac.httparchive.org/static/images/2022/page-weight/distribution-of-requests.png
https://almanac.httparchive.org/static/images/2022/page-weight/distribution-of-requests-by-content-type.png
https://almanac.httparchive.org/static/images/2022/page-weight/distribution-of-requests-by-content-type.png

Breaking down requests by type shows that images are the leading resource requests, with the

median page requesting 25 images for desktop page loads; 22 for mobile. This is nearly identical

to last year’s 25 for desktop; 23 for mobile.

JavaScript is the next largest in request count, 22 requests for desktop page loads, 21 for

mobile, again a very close match to 2021, where there were 21 for desktop and 20 for mobile.

In general, there’s little difference between desktop and mobile, other than images being

slightly lower on mobile—perhaps attributable to lazy-loading not firing on smaller initial

viewports.

At the 50th percentile, desktop pages were over 2 MB, mobile pages just under that. By the

90th percentile, this has grown to a nearly 9.0 MB for desktop, and nearly 8.0 MB for mobile.

Overall page weight is remarkably close when looking at what is served desktop versus mobile

user-agents, although the gap grows slightly in the higher percentile (larger) pages. Given that

mobile devices tend to have fewer local resources and more constrained network capabilities,

this is concerning.

Figure 21.4. Page weight distribution by percentile.

Figure 21.5. The weight of the largest desktop page

678 MB

Part IV Chapter 21 : Page Weight

658 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/page-weight/distribution.png
https://almanac.httparchive.org/static/images/2022/page-weight/distribution.png

At the 100th percentile, the largest pages we detected, desktop users were faced with eye-

watering 678 MB pages, and mobile users 390 MB.

Let’s dig a little deeper into what is making up these large sizes.

Request bytes

Looking at the median page weight over time, it remains clear that the trend remains

disappointingly consistent, with the median weight only growing over time.

In the 10-year period between June 2012 to June 2022, the median page weight increased by

221%, or 1.6 MB, for desktop page loads, 594%, or 1.7 MB for mobile page loads

Year on year, (June 2022 versus June 2021) desktop increased from 2,121 KB to 2,315 KB on

desktop, 1,912 KB to 2,020 KB on desktop.

Figure 21.6. Median page weight over time.

Figure 21.7. Growth in mobile page weight over 10 years

594%

Part IV Chapter 21 : Page Weight

2022 Web Almanac by HTTP Archive 659

https://almanac.httparchive.org/static/images/2022/page-weight/median-page-weight-over-time.png
https://almanac.httparchive.org/static/images/2022/page-weight/median-page-weight-over-time.png

Content type and file formats

A look at the median weight of the most common resource content types making up the weight

of pages shows images are the largest contributor, at 1,026 KB for desktop pages; 811 KB for

mobile. JavaScript is the next largest contributor for both desktop and mobile page loads.

Figure 21.8. Median page weight by content type.

Part IV Chapter 21 : Page Weight

660 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/page-weight/median-page-weight-by-content-type.png
https://almanac.httparchive.org/static/images/2022/page-weight/median-page-weight-by-content-type.png

Whilst images are overall the biggest contributors to page weight across the internet, the

biggest contributors in sheer size per request are video, audio, and fonts. At the 90th

percentile, video requests weigh in at 2,158 KB, four times larger than all the other 90th

percentile types combined.

Like images, there are a number of opportunities with more modern formats, and better

encoding, sizing, and compression that could help slim this down. But it’s worth noting that

video by its nature tends to be weightier, and there’s a balance between size and acceptable

quality that needs to be struck. For more information, see the video section of the Media

chapter.

Figure 21.9. Distribution of response sizes by content type.

Part IV Chapter 21 : Page Weight

2022 Web Almanac by HTTP Archive 661

https://almanac.httparchive.org/static/images/2022/page-weight/distribution-of-response-size-by-content-type.png
https://almanac.httparchive.org/static/images/2022/page-weight/distribution-of-response-size-by-content-type.png

Looking at the median response size for each content type, it’s perhaps surprising to see that

video content is larger at 268 KB on mobile page loads than desktop ones, at 208 KB. It’s quite

surprising that the median weight of fonts is higher than images, over double at 20 KB versus 8

KB on mobile.

Figure 21.10. Median response size by content type.

Figure 21.11. Median response size by format.

Part IV Chapter 21 : Page Weight

662 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/page-weight/median-response-size-by-content-type.png
https://almanac.httparchive.org/static/images/2022/page-weight/median-response-size-by-content-type.png
https://almanac.httparchive.org/static/images/2022/page-weight/median-response-size-by-format.png
https://almanac.httparchive.org/static/images/2022/page-weight/median-response-size-by-format.png

Focusing on file formats, it’s disappointing to see f4v, flash, and flv adding significant weight to

pages, the flash player plugin was discontinued in 2021, and removed from major browsers like

Chrome822, meaning these bytes are most likely entirely wasted.

Image bytes

Since the inception of the Web Almanac images have represented the largest percentage of

page weight by bytes, so it’s worth seeing what formats we are using for them.

Distribution of image sizes by formats shows us that JPG, WebP, and PNG file formats retain

their 2021 status as top sources of image weight.

Figure 21.12. Distribution of image sizes by format.

822. https://support.google.com/chrome/answer/6258784

Part IV Chapter 21 : Page Weight

2022 Web Almanac by HTTP Archive 663

https://support.google.com/chrome/answer/6258784
https://support.google.com/chrome/answer/6258784
https://almanac.httparchive.org/static/images/2022/page-weight/distribution-of-image-sizes-by-format.png
https://almanac.httparchive.org/static/images/2022/page-weight/distribution-of-image-sizes-by-format.png

The median desktop image weight for 2022 was 1,026 kilobytes, a mere 44 kilobyte increase

from 2021. Mobile barely shifted at 881 kilobytes.

The year-over-year consistency is only disrupted by the extremities of the 100th percentile.

The largest desktop page contained 672MB of images, a significant increase from the hefty max

of 186MB in 2021. Similarly, the mobile 100th percentile saw a 959% increase to 385MB.

Video bytes

According to the media chapter of the mobile web, 5% of mobile pages include the video
element. This information aligns with the 100th percentile of other file type in overall page

weight (as video files are grouped in the set). Pages bringing video experiences take on a

corresponding increase in weight.

MP4s, which represent 51.5% of videos on the web, also represent the capacity for largest

response size. At the 50th percentile, mp4 response sizes come in at 534 kilobytes.

Figure 21.13. Image size distribution.

Part IV Chapter 21 : Page Weight

664 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/page-weight/distribution-of-image-sizes.png
https://almanac.httparchive.org/static/images/2022/page-weight/distribution-of-image-sizes.png

Adoption rates of byte-saving technologies

So what can we do about all those bytes we’re sending? Well obviously we could just stop

sending them, but obviously they are being sent for a reason—you’d hope! So let’s look at how

to keep the content, but send it in more efficient ways than just stuffing kilobytes and kilobytes

down the pipes.

Facades for videos & other embeds

Videos and other interactive embeds can massively increase the overall weight of a page.

Videos by their nature can be large in terms of bytes, but other content—like social media

embeds used to embed a tweet for example—can bring in a substantial amount of JavaScript

and other data to enable these to become interactive.

A good design pattern is the use of facades, a form of lazy-loading. This is basically showing a

graphical representation of the element, and not loading the full thing in until required. For

example, for a YouTube video, the initial load could be just the poster image for the video, an

approach taken by the popular lite-youtube-embed823 library, which changes to the actual full

YouTube embed on click. Alternatively, it can even behave more like traditional image lazy-

Figure 21.14. Image size distribution.

823. https://github.com/paulirish/lite-youtube-embed

Part IV Chapter 21 : Page Weight

2022 Web Almanac by HTTP Archive 665

https://almanac.httparchive.org/static/images/2022/page-weight/distribution-of-video-sizes-by-format.png
https://almanac.httparchive.org/static/images/2022/page-weight/distribution-of-video-sizes-by-format.png
https://github.com/paulirish/lite-youtube-embed

loading and change when in or near the viewport.

Whilst there are drawbacks to this approach, as detailed in the web.dev article on third-party

facades824 the benefits to the user in terms of data sent over the wire are clear, they only need to

pay that cost if they want to watch the video, or interact with the live chat app.

In practice, adoption here is hard to track. Lighthouse offers a test where it looks at the use of a

limited set of third-party resources, and if these are requested, points out there might be a

facade available.

If a site is successfully using a facade, these resources would not be requested, and therefore

isn’t something lighthouse could test for.

The facade pattern doesn’t need to be limited to third-party resources either—although these

do come with the additional downside of additional lookups and connections— the approach

can work well for large self-hosted resources too.

Analysis showed that there are a number of sites where Lighthouse was able to detect that a

facade might be beneficial:

9.6% of desktop pages tested could have benefited from implementing a facade, a slightly

better 8.8% for mobile visits.

Figure 21.15. Third-party facades.

824. https://web.dev/third-party-facades/

Part IV Chapter 21 : Page Weight

666 2022 Web Almanac by HTTP Archive

https://web.dev/third-party-facades/
https://web.dev/third-party-facades/
https://almanac.httparchive.org/static/images/2022/page-weight/third-party-facades.png
https://almanac.httparchive.org/static/images/2022/page-weight/third-party-facades.png

Compression

Compressing resources before serving them to the client can save bytes that have to be sent

across the network, and with fewer bytes. In theory, and usually in practice, this makes for

faster loads.

For text, non-media, files like HTML, CSS, JavaScript, JSON, or SVG, as well as for ttf and ico

files, HTTP compression is a powerful tool, using gzip or Brotli compression to squeeze down

file size. Media like images and video tend not to see any benefit as they are already

compressed.

We detected that 74% of page loads on Desktop loads, and a slightly lower 73% of Mobile page

loads.

The slightly lower proportion of mobile usage is a disappointing result because they are more

likely to have slower and more expensive network connections.

Ultimately compression doesn’t reduce the whole impact of page weight, because these

resources have to be decompressed on the client before they are used.

It’s not an entirely free process, either. There is processing overhead on the server to

compress—although this might be cacheable for static resources—and likewise a cost on the

client side to decompress these resources before use.

Figure 21.16. Text compression proper usage.

Part IV Chapter 21 : Page Weight

2022 Web Almanac by HTTP Archive 667

https://almanac.httparchive.org/static/images/2022/page-weight/text-compression-proper-usage.png
https://almanac.httparchive.org/static/images/2022/page-weight/text-compression-proper-usage.png

It’s about tradeoffs and tackling the worst bottleneck, which is often the network. Compression

techniques are remarkably efficient, and the net benefit is usually worth it.

Minification

Minification825 helps to reduce the overall size of text-based resources by removing unnecessary

characters, like whitespace, code comments, and other things that play no part in how a

browser interprets and uses these resources.

CSS and JavaScript are great candidates for minification, and we looked at both, using

Lighthouse’s test for these resources.

84% of Desktop page loads correctly minified the CSS served, and a smaller 68% of mobile page

loads.

Figure 21.17. Minified CSS proper usage.

825. https://en.wikipedia.org/wiki/Minification_(programming)

Part IV Chapter 21 : Page Weight

668 2022 Web Almanac by HTTP Archive

https://en.wikipedia.org/wiki/Minification_(programming)
https://almanac.httparchive.org/static/images/2022/page-weight/minified-css-proper-usage.png
https://almanac.httparchive.org/static/images/2022/page-weight/minified-css-proper-usage.png

77% of Desktop page loads correctly minified the JavaScript resources served, and a smaller

64% of mobile page loads.

Whilst minification for both CSS and JavaScript is thankfully popular, with the majority of sites

getting it right, there’s room for improvement still.

It’s disappointing that like in compression, minification for mobile users lags behind desktop.

Like compression, saving bytes is especially helpful on mobile devices.

Unlike compression, there’s no overhead on the client side to minification, resources don’t need

to be ’unminified’ to be used. There can be overhead on the server-side if the minification is

done on-the-fly at serving time, but CSS and JavaScript are likely to be static files, and

minification should be done at build time, or before publishing the resource, meaning there is

no further overhead.

Caching and CDNs

Caching allows a resource to be reused until a specified expiration. Caches are used in browsers

and on servers.

CDNs are a popular example. These interconnected servers are geographically distributed in

order to send cached content from a network location closest to the user. CDNs do not reduce

page weight but rather reduce the delay by reducing the distance between requestor and

Figure 21.18. Minified JavaScript proper usage.

Part IV Chapter 21 : Page Weight

2022 Web Almanac by HTTP Archive 669

https://almanac.httparchive.org/static/images/2022/page-weight/minified-javascript-proper-usage.png
https://almanac.httparchive.org/static/images/2022/page-weight/minified-javascript-proper-usage.png

resource.

As such, we did not investigate this in this chapter, but the CDN chapter covers this in more

detail and last year’s Caching826 chapter gives more detail on that.

Conclusion

A hefty page weight results in longer user wait. The expense of ever-inflating web pages is paid

in cost of data-access, cost of devices to meet the technical requirements, and time.

While images and JavaScript remain the largest contributors to byte size, 2022 revealed

surprising increases such as a greater prevalence of byte-heavy videos on mobile and the

median font byte size being higher than that of its image counterpart.

While they thankfully are extreme compared to most of the web, the absurd outliers seen in the

100th percentile show the potential for unchecked bloat as new file types and functionalities

are introduced to the digital experience.

Byte-saving technologies have alleviated some of the pressure but with higher adoption rates

on desktop despite their use being more impactful to mobile users. Unchecked, this continued

inflation will further the gap of digital inequality.

Authors

Jamie Indigo

@Jammer_Volts fellowhuman1101 https://not-a-robot.com

Jamie Indigo isn’t a robot, but speaks bot. As a technical SEO at DeepCrawl827, they

study how search engines crawl, render, and index the web. They love to tame wild

JavaScript and optimize rendering strategies. When not working, Jamie likes

horror movies, graphic novels, and Dungeons & Dragons.

826. https://almanac.httparchive.org/en/2021/cdn
827. https://www.deepcrawl.com

Part IV Chapter 21 : Page Weight

670 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/en/2021/cdn
https://twitter.com/Jammer_Volts
https://github.com/fellowhuman1101
https://not-a-robot.com/
https://www.deepcrawl.com/

Dave Smart

@davewsmart dwsmart https://tamethebots.com

Dave Smart is a developer and technical search engine consultant at Tame the

Bots828. They love building tools and experimenting with the modern web, and can

often be found at the front in a gig or two.

828. https://tamethebots.com

Part IV Chapter 21 : Page Weight

2022 Web Almanac by HTTP Archive 671

https://twitter.com/davewsmart
https://github.com/dwsmart
https://tamethebots.com/
https://tamethebots.com/
https://tamethebots.com/

672 2022 Web Almanac by HTTP Archive

Part IV Chapter 22

CDN

Written by Haren Bhandari and Joe Viggiano
Reviewed by Yutaka Oka
Analyzed by Haren Bhandari and Joe Viggiano
Edited by Barry Pollard

Introduction

This chapter provides insights regarding the current state of CDN usage. CDNs are playing an

increasingly important role in delivering content to users around the globe—even for smaller

sites by facilitating the delivery of static and third-party content such as JavaScript libraries,

Fonts and other content. Another key aspect of the CDNs that we will discuss in this chapter is

the role CDNs play in adoption of new standards such as TLS and HTTP versions.

We think that CDNs will continue play a vital role in the future not just for content delivery but

for content security as well. We recommend that users look at CDNs from both a performance

and a security viewpoint.

What is a CDN?

A Content Delivery Network (CDN) is a geographically distributed network of proxy servers. The

Part IV Chapter 22 : CDN

2022 Web Almanac by HTTP Archive 673

goal of a CDN is to provide high availability and performance for web content. It does this by

distributing content closer to the end users as well as supporting advanced technologies to

delivery content optimally.

Due to the explosion of web content such as videos and images, CDN has been a vital part of

many websites to provide a smooth user experience. Post COVID-19, the need for CDN has

only increased due to many brick and mortar businesses moving online, increase in web

conferencing, online gaming and video streaming.

During the early days, a CDN was a simple network of proxy servers which would:

1. Cache content (like HTML, images, stylesheets, JavaScript, videos, etc.)

2. Reduce network hops for end users to access content

3. Offload TCP connection termination away from the data centers hosting the web

properties

They primarily helped web owners to improve the page load times and to offload traffic from

the infrastructure hosting these web properties.

Over time, the services offered by CDN providers have evolved beyond caching and offloading

bandwidth/connections. Due to its distributed nature and large distributed network capacity

CDNs have proved to be extremely efficient at handling large scale Distributed Denial-of-

Service (DDoS)829 attacks. Edge computing is another service that has gained popularity in the

recent years. Many CDN vendors provide compute services at the edge that allows the web

owners to run simple code at the edge.

Other services offered by the CDN vendors include:

• Cloud-hosted Web Application Firewalls (WAF)830

• Bot Management solutions

• Clean pipe solutions (Scrubbing Data-centers)

• Image and video management solutions

There are benefits to web owners in pushing web application logic and workflows closer to the

end user. This eliminates the round trip and bandwidth that a HTTP/HTTPS request would take.

It also handles near-instant scalability requirements for the origin. A side-effect of this is that

Internet Service Providers (ISPs) benefit from the scalability management as well, which

improves their infrastructure capacities.

829. https://en.wikipedia.org/wiki/Denial-of-service_attack#Distributed_attack
830. https://en.wikipedia.org/wiki/Web_application_firewall

Part IV Chapter 22 : CDN

674 2022 Web Almanac by HTTP Archive

https://en.wikipedia.org/wiki/Denial-of-service_attack#Distributed_attack
https://en.wikipedia.org/wiki/Denial-of-service_attack#Distributed_attack
https://en.wikipedia.org/wiki/Web_application_firewall

Caveats and disclaimers

As with any observational study, there are limits to the scope and impact that can be measured.

The statistics gathered on CDN usage for the Web Almanac are focused more on applicable

technologies in use and not intended to measure performance or effectiveness of a specific

CDN vendor. While this ensures that we are not biased towards any CDN vendor, it also means

that these are more generalized results.

These are the limits to our testing methodology:

• Simulated network latency: We use a dedicated network connection that

synthetically shapes traffic.

• Single geographic location: Tests are run from a single datacenter and cannot test

the geographic distribution of many CDN vendors.

• Cache effectiveness: Each CDN uses proprietary technology and many, for security

reasons, do not expose cache performance.

• Localization and internationalization: Just like geographic distribution, the effects

of language and geo-specific domains are also opaque to these tests.

• CDN detection: This is primarily done through DNS resolution and HTTP headers.

Most CDNs use a DNS CNAME to map a user to an optimal data center. However,

some CDNs use Anycast IPs or direct A+AAAA responses from a delegated domain

which hide the DNS chain. In other cases, websites use multiple CDNs to balance

between vendors, which is hidden from the single-request pass of our crawler.

All of this influences our measurements.

Most importantly, these results reflect the support of specific features (for example TLSv1.3,

HTTP/2) per site, but do not reflect actual traffic usage. YouTube is more popular than

www.example.com yet both will appear as equal in our dataset.

With this in mind, here are a few statistics that were intentionally not measured in the context

of a CDN:

Part IV Chapter 22 : CDN

2022 Web Almanac by HTTP Archive 675

1. Time To First Byte (TTFB)

2. CDN Round Trip Time

3. Core Web Vitals

4. “Cache hit” versus “cache miss” performance

While some of these could be measured with HTTP Archive dataset, and others by using the

CrUX dataset, the limitations of our methodology and the use of multiple CDNs by some sites,

will be difficult to measure and so could be incorrectly attributed. For these reasons, we have

decided not to measure these statistics in this chapter.

We did not see any notable differences between mobile and desktop so, to avoid repeating

ourselves, the data provided in this chapter is primarily for mobile usage unless otherwise

noted.

CDN adoption

A web page is composed of following key components:

1. Base HTML page (for example, www.example.com/index.html —often available

at a more friendly name like just www.example.com).

2. Embedded first-party content such as images, css, fonts and javascript files on the

main domain (www.example.com) and the subdomains (for example,

images.example.com , or assets.example.com).

3. Third-party content (for example, Google Analytics, advertisements) served from

third-party domains.

Part IV Chapter 22 : CDN

676 2022 Web Almanac by HTTP Archive

The above chart shows the split of each type of request for CDNs versus hosted resources for

mobile—as mentioned in the introduction almost identical figures were seen for desktop. We

see CDNs are often utilized for delivering static content such as images, stylesheets, JavaScript,

and fonts. This kind of content doesn’t change frequently, making it a good candidate for

caching on a CDNs proxy servers. We still see CDNs are used more frequently for this type of

resource–especially for third-party content.

CDNs can provide better performance for delivering non-static content as well as they often

optimize the routes and use most efficient transport mechanisms, but we see the usage of

serving the HTML still lags considerably behind the other two types.

Figure 22.1. CDN usage vs hosted resources on mobile.

Part IV Chapter 22 : CDN

2022 Web Almanac by HTTP Archive 677

https://almanac.httparchive.org/static/images/2022/cdn/cdn-usage-hosted.png
https://almanac.httparchive.org/static/images/2022/cdn/cdn-usage-hosted.png

Compared to the year 2021831 we found that the usage of CDN has been steadily increasing.

There was a large bump in CDN usage for the content served from subdomains, and a smaller

one for HTML while third-party CDN usage remained relatively static.

These are some of the potential reasons that can be attributed to this rise:

• Post pandemic, many businesses took a large portion of their physical business

online. This put a lot of strain on their servers and found that it was much more

efficient to server the static content through CDNs for offloading through caching

and faster delivery.

• This increase was not seen in 2021 as many businesses were still trying to figure out

the optimal solution for their problem. In fact we saw a dip in CDN usage for the

subdomain and third-party type.

• Sites relied on serving third-party content through third-party domains instead of

their own domains. The fact that the amount of content served from third-party

domains increased by 3% during this period supports this assumption.

Regarding the base HTML page, the traditional pattern has been to serve the base HTML from

the origin and this pattern has continued as majority of base pages continue to be served from

the origin. However, there has been a 4% increase in the base pages being served from CDNs.

Figure 22.2. Trends for content served from CDN for mobile

831. https://almanac.httparchive.org/en/2021/cdn

Part IV Chapter 22 : CDN

678 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/cdn/cdn-usage-hosted-comparison.png
https://almanac.httparchive.org/static/images/2022/cdn/cdn-usage-hosted-comparison.png
https://almanac.httparchive.org/en/2021/cdn

The trend of base HTML pages being served from the CDN is clearly on the rise.

These are some of the likely reasons behind the rise:

• CDNs can improve load time of the base HTML page that can be of high importance

to improve customer experience and keep users engaged.

• Using distributed DNS from by CDN providers is simpler and faster.

• It is easier to plan Disaster Recovery if most of the content including the base

HTML page is pushed through CDNs. CDNs often provide a failover functionality to

automatically switch to the alternative site once the primary site becomes unstable

or unavailable.

While we observed CDN adoption across different types of content, we will look at this data

from a different point of view below—based on the site popularity.

Looking at CDN usage for websites based on their popularity—sourced from Google’s Chrome

UX Report—the top 1,000-10,000 contribute to the highest usage of CDN. For the high ranked

sites, it is understandable that owner companies are investing in CDN for performance and

other benefits but even for the top 1,000,000 sites, there has been about a 7% increase in the

amount of content delivered through CDNs compared to 2021832. This increase in CDN usage

Figure 22.3. CDN usage by site popularity on mobile.

832. https://almanac.httparchive.org/en/2021/cdn#fig-3

Part IV Chapter 22 : CDN

2022 Web Almanac by HTTP Archive 679

https://almanac.httparchive.org/static/images/2022/cdn/cdn-usage-ranking-desktop.png
https://almanac.httparchive.org/static/images/2022/cdn/cdn-usage-ranking-desktop.png
https://almanac.httparchive.org/en/2021/cdn#fig-3

for lower popularity sites can be attributed to the fact that there has been an increase in free

and affordable options for CDNs and many hosting solutions have CDNs bundled with the

services.

Top CDN providers

CDN providers can be broadly classified into 2 segments:

1. Generic CDN (Akamai, Cloudflare, CloudFront, Fastly, etc.)

2. Purpose-built CDN (Netlify, WordPress, etc.)

Generic CDNs address the mass market requirements. Their offerings include:

• Web site delivery

• Mobile app API delivery

• Video streaming

• Edge computing services

• Web security offerings

This appeals to a larger set of industries and is reflected in the data.

Part IV Chapter 22 : CDN

680 2022 Web Almanac by HTTP Archive

The above figure shows the top CDN providers for base HTML requests. The top vendors in this

category are Cloudflare, Google, Fastly Amazon CloudFront, Akamai and Atomattic.

For the subdomain requests we can see greater usage of providers like Amazon and Google.

Figure 22.4. Top CDNs for HTML requests on mobile.

Figure 22.5. Top CDNs for subdomain requests on mobile.

Part IV Chapter 22 : CDN

2022 Web Almanac by HTTP Archive 681

https://almanac.httparchive.org/static/images/2022/cdn/top-cdns-html.png
https://almanac.httparchive.org/static/images/2022/cdn/top-cdns-html.png
https://almanac.httparchive.org/static/images/2022/cdn/top-cdns-subdomain.png
https://almanac.httparchive.org/static/images/2022/cdn/top-cdns-subdomain.png

This is because many users have their content hosted in the cloud services they provide and the

users utilize CDN offerings along with their cloud services. This helps the users to scale their

applications and increase the performance of their application.

Looking at third-party domains, a different trend in top CDN providers is seen. We see Google

top the list before the generic CDN providers. The list also brings Facebook into prominence.

This is backed by the fact that a lot of third-party domain owners require CDNs more than

other industries. For the larger third-party providers—like Google, like Facebook—this

necessitates them to invest in building a purpose-built CDN. A purpose-built CDN is one which

is optimized for a particular content delivery workflow.

For example, a CDN built specifically to deliver advertisements will be optimized for:

• High input-output (I/O) operations

• Effective management of long tail833 content

• Geographical closeness to businesses requiring their services

This means purpose-built CDNs meet the exact requirements of a particular market segment as

opposed to a generic CDN solution. Generic solutions can meet a broader set of requirements

but are not optimized for any particular industry or market.

Figure 22.6. Top CDNs for third-party requests on mobile.

833. https://en.wikipedia.org/wiki/Long_tail

Part IV Chapter 22 : CDN

682 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/cdn/top-cdns-3p.png
https://almanac.httparchive.org/static/images/2022/cdn/top-cdns-3p.png
https://en.wikipedia.org/wiki/Long_tail

TLS usage

With CDNs set up in the request-response workflows, the end-user’s TLS connection

terminates at the CDN. In turn, the CDN sets up a second independent TLS connection and this

connection goes from the CDN to the origin host. This break in the CDN workflow allows the

CDN to define the end-user’s TLS parameters. CDNs tend to also provide automatic updates to

internet protocols. This allows web owners to receive these benefits without making changes

to their origin.

TLS adoption impact

The charts below show that the adoption of the latest version of TLS has been much higher for

the content served from CDN compared to origin

Compared to the year 2021834, for mobile HTML content the adoption of TLS v1.3 has increased

by 5% while for the content served from origin the TLS v1.3 adoption has increased by 10%.

Figure 22.7. Distribution of TLS version for HTML (mobile).

834. https://almanac.httparchive.org/en/2021/cdn#tls-adoption-impact

Part IV Chapter 22 : CDN

2022 Web Almanac by HTTP Archive 683

https://almanac.httparchive.org/static/images/2022/cdn/tls-version-mobile.png
https://almanac.httparchive.org/static/images/2022/cdn/tls-version-mobile.png
https://almanac.httparchive.org/en/2021/cdn#tls-adoption-impact

In the current security landscape it is important for the content to be delivered via the latest

TLS version. It can be seen from the data above that the move to TLS v1.3 was much faster for

CDNs compared to the origin. This shows the added security benefit of using CDNs for content

delivery.

TLS performance impact

Common logic dictates that the fewer hops it takes for a HTTPS request-response to traverse,

the faster the round trip would be.

Figure 22.8. Distribution of TLS version for third-party requests (mobile).

Part IV Chapter 22 : CDN

684 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/cdn/tls-version-mobile-3p.png
https://almanac.httparchive.org/static/images/2022/cdn/tls-version-mobile-3p.png

As it can be seen from the figures above, the TLS negotiation time is generally much better

when with CDNs. This is even more so when comparing the desktop and mobile data, where the

greater Round Trip Time (RTT) used by our mobile crawler results in much greater TLS

negotiation times.

Figure 22.9. HTML TLS negotiation - CDN vs origin (desktop)

Figure 22.10. HTML TLS negotiation - CDN vs origin (mobile)

Part IV Chapter 22 : CDN

2022 Web Almanac by HTTP Archive 685

https://almanac.httparchive.org/static/images/2022/cdn/tls-negotiation-desktop.png
https://almanac.httparchive.org/static/images/2022/cdn/tls-negotiation-desktop.png
https://almanac.httparchive.org/static/images/2022/cdn/tls-negotiation-mobile.png
https://almanac.httparchive.org/static/images/2022/cdn/tls-negotiation-mobile.png

CDNs have helped slash the TLS connection times. This is due to their proximity to the end user

and adoption of newer TLS protocols that optimize the TLS negotiation. CDNs hold the edge

over origin at all percentiles here. At P10 and P25, CDNs are nearly 1.5x faster than origin in

TLS set up time. The gap increases even more once we hit the median and above, where CDNs

are nearly 2x faster (mobile) and nearly 3x faster (desktop). 90th percentile users using a CDN

will have better performance than 50th percentile users on direct origin connections.

This is particularly important when you consider that all sites have to be on TLS these days.

Optimal performance at this layer is essential for other steps that follow TLS connection. In this

regard, CDNs are able to move more users to lower percentile brackets compared to direct

origin connections.

HTTP/2+ adoption

The HTTP/2 specification was first introduced in 2015 and saw broad support with most major

browsers adopting before the end of the year. The HTTP application layer protocol had not

been updated since HTTP 1.1 in 1997 and since then the web traffic trend, content-type,

content size, website design, platforms, mobile apps and more have evolved significantly. Thus,

there was a need to have a protocol which can meet the requirements of the modern-day web

traffic and that protocol was realized with HTTP/2.

Despite the hype of HTTP/2 and the promise of reduced latency and other functionality,

adoption relied on server side updates to support the newer application protocol. CDNs can

help bridge the challenge of newer implementations for web owners, and this is also the case

for the even newer HTTP/3 protocol. An HTTP connection terminates at the CDN level, and

this provides web owners the ability to deliver their website and subdomains over HTTP/2 and

HTTP/3 without the need to upgrade their own infrastructure to support it. Similar benefits

were also seen with the adoption of newer TLS versions.

CDNs act as the proxy to bridge the gap by providing a layer to consolidate hostnames and

route traffic to relevant endpoints with minimal change to their hosting infrastructure.

Features like prioritizing content in the queue and server push can be managed from the CDNs

side and a few CDNs even provide hands-off automated solutions to run these features without

any inputs from website owners, thus providing a boost to HTTP/2 adoption.

Note that due to the way HTTP/3 works (see the HTTP chapter for more information), HTTP/3 is often

not used for first connections which is why we are instead measuring “HTTP/2+”, since many of those

HTTP/2 connections may actually be HTTP/3 for repeat visitors (we have assumed that no servers

implement HTTP/3 without HTTP/3).

Part IV Chapter 22 : CDN

686 2022 Web Almanac by HTTP Archive

There are stark contrasts in the graph above with high HTTP/2+ adoption by domains on CDNs

compared to the ones not using a CDN.

In 2021 nearly 40% of the content served from origin had adopted HTTP/2835 while during the

same time 81% of the content served from CDNs were served through HTTP/2. For origins this

number has grown by 3% points while for the CDN it has grown by 6% points—further widening

the considerable gap that was already present. This shows how CDNs were able to allow the

website owners to take advantage of newer protocols from very early stage without making

any changes in the origin.

Figure 22.11. Distribution of HTTP versions for HTML (mobile).

835. https://almanac.httparchive.org/en/2021/cdn#http2-http2-or-better-adoption

Part IV Chapter 22 : CDN

2022 Web Almanac by HTTP Archive 687

https://almanac.httparchive.org/static/images/2022/cdn/cdn-http-versions-mobile.png
https://almanac.httparchive.org/static/images/2022/cdn/cdn-http-versions-mobile.png
https://almanac.httparchive.org/en/2021/cdn#http2-http2-or-better-adoption

Third-party domains have been even quicker to support new protocols as we saw in our

previous study. In 2022 we saw a further decline in the share of HTTP/1.1 for the third-party

domains, though our data was unable to identify a larger number of the protocol used this year,

which warrants further investigation.

Third-party domains need to have consistent performance across all network conditions, and

this is where HTTP/2+ adds value. In June of 2022, the Internet Engineering Task Force (IETF)

published the HTTP/3 RFC836 to take the web from TCP to UDP. Many CDN providers have been

quick to adopt HTTP/3 support, some before its formal RFC publication, and over time we

should see web owners adopting HTTP/3, especially with mobile network traffic having a higher

contribution to the total internet traffic. Stay tuned for more insights in 2023.

Brotli adoption

Content delivered over the internet employs compression to reduce the payload size. A smaller

payload means it’s faster to deliver the content from server to end user. This makes websites

load faster and provide a better end-user experience. For images, this compression is handled

by image file formats like JPEG, WEBP, AVIF—refer to the Media chapter for more on this. For

textual web assets—such as HTML, JavaScript, and stylesheets— compression was traditionally

handled by the Gzip fiel format. Gzip has been in existence since 1992. It did a good job of

Figure 22.12. Distribution of HTTP versions for third-party requests (mobile).

836. https://www.theregister.com/2022/06/07/http3_rfc_9114_published/

Part IV Chapter 22 : CDN

688 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/cdn/cdn-http-versions-mobile-3p.png
https://almanac.httparchive.org/static/images/2022/cdn/cdn-http-versions-mobile-3p.png
https://www.theregister.com/2022/06/07/http3_rfc_9114_published/
https://en.wikipedia.org/wiki/Gzip

making text asset payloads smaller, but a new text asset compression can do better than Gzip

by using the newer Brotli compression format.

Similar to TLS and HTTP/2 adoption, Brotli went through a phase of gradual adoption across

web platforms. At the time of this writing, Brotli is supported by over 96%837 of the web

browsers globally. However, not all websites compress text assets in Brotli format. This is

because of both lack of support and of the longer time required to compress a text asset in

Brotli format compared to Gzip compression. Also, the hosting infrastructure needs to have

backward compatibility to serve Gzip compressed assets for older platforms which do not

support the Brotli format, which can add complexity.

The impact of this is observed when we compare websites which are using CDN against the

ones not using CDN.

Both CDN and Origin have shown an increase in adoption of Brotli compared to the previous

year838. We have seen the adoption of Brotli on CDN grow by 5% points while the Origin grew by

almost 4% points. We will be able to see if this trend will continue in year 2023 or we have

reached the saturation point.

Figure 22.13. Distribution of compression types (mobile).

837. https://caniuse.com/brotli
838. https://almanac.httparchive.org/en/2021/cdn#brotli-adoption

Part IV Chapter 22 : CDN

2022 Web Almanac by HTTP Archive 689

https://en.wikipedia.org/wiki/Brotli
https://caniuse.com/brotli
https://almanac.httparchive.org/static/images/2022/cdn/cdn-compression-mobile.png
https://almanac.httparchive.org/static/images/2022/cdn/cdn-compression-mobile.png
https://almanac.httparchive.org/en/2021/cdn#brotli-adoption
https://almanac.httparchive.org/en/2021/cdn#brotli-adoption

Client Hint adoption

Client Hints allows a web server to proactively request data from the client and are sent as part

of the HTTP headers. The client may provide information such as device, user-agent

preferences and networking. Based on the provided information, the server can determine the

most optimal resources to respond with to the requesting client. Client Hints were first

introduced on the Google Chrome browsers and while other Chromium based browsers have

adopted it, other popular browsers have limited or no support for Client Hints.

The CDN, origin servers, and client browser must all support Client Hints to be utilized

properly. As part of the flow, the CDN can present the Accept-CH HTTP header to the client

in order to request which Client Hints a client should include in subsequent requests. We

measured clients responses where the CDN provided this header inside the request and

measured it across all CDN requests recorded as part of our testing.

For both desktop and mobile clients we saw less than 1% usage of Client Hints, showing that

Client Hints adoption is still in its infancy.

Image format adoption

CDNs have traditionally been used to cache, compress and deliver static content such as

Figure 22.14. Client Hints ComparisonClient Hints Comparison (mobile).

Part IV Chapter 22 : CDN

690 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/cdn/cdn-client-hints-mobile.png
https://almanac.httparchive.org/static/images/2022/cdn/cdn-client-hints-mobile.png

images since their inception. Since then many CDNs have added the ability to dynamically

change images in both format and sizing on the fly to optimize the image for different use cases.

This may be performed automatically, based on the user agent or client hints, or by sending

additional parameters in the query string whereby compute at the edge will interpret and

modify the image in the response accordingly. This allows site operators to upload a single high

resolution image and modify it on the fly for when lower quality or lower resolution images are

needed such as in thumbnails.

Across both desktop and mobile the dominant image formats were JPG (JPEG) and PNG. JPG

provides a lossly compressed file format optimizing for size. PNG or Portable Graphics Format

supports lossless compression meaning no data will be lost when the image is compressed,

however the image overall is larger in size than a JPG. For more information on JPG vs PNG

visit Adobe’s website839.

Conclusion

From our continued study in the past years, we can see that the CDNs have not only been vital

to website owners in order to reliably deliver content from origin to any user across the globe,

they have also played a major role in new security and web standards adoption.

Figure 22.15. Distribution of Image Formats (mobile).

839. https://www.adobe.com/creativecloud/file-types/image/comparison/jpeg-vs-png.html

Part IV Chapter 22 : CDN

2022 Web Almanac by HTTP Archive 691

https://almanac.httparchive.org/static/images/2022/cdn/cdn-image-formats-mobile.png
https://almanac.httparchive.org/static/images/2022/cdn/cdn-image-formats-mobile.png
https://www.adobe.com/creativecloud/file-types/image/comparison/jpeg-vs-png.html

In general, we have seen the rise in the usage of CDNs across the board. We saw that the CDN

greatly facilitated the adoption new web security standards such as TLS 1.3 where we saw

much higher percentage of traffic using TLS 1.3 came from CDN.

When it comes to the adoption of new web standards and new web technologies such as HTTP/

2, Brotli compression we again saw CDNs leading the way. Much higher percentages of

websites served out of CDN saw these new standards being adopted. From the end-user

perspective this is very positive development as they will be able use the site securely while

getting the optimal user experience.

We are also looking at new metrics like Client Hints and image format adoption starting this

year. We will be able to get more insights as we collect more data for the next year.

There are limitations to the insights we can deduce about CDNs from the outside, since it is

hard to know the secret sauce powering them behind the scenes. However, we have crawled

the domains and compared the ones on CDNs against those who are not. We can see that CDNs

have been an enabler for websites to adopt new web protocols, from the network layer to the

application layer.

This role of CDNs is highly valuable and this will continue to be the case. CDN providers are

also a key part of the Internet Engineering Task Force840, where they help shape the future of the

internet. They will continue to play a key role aiding internet-enabled industries to operate

smoothly, reliably and quickly.

We look forward to the next year to collect more data and provide useful insights to our

readers.

Authors

Haren Bhandari

harendra

Haren Bhandari is a Solutions Architect at Amazon Web Services. Before joining

Amazon Web Services, Haren used to work at Akamai Technologies and has deep

experience with CDNs.

840. https://www.ietf.org/

Part IV Chapter 22 : CDN

692 2022 Web Almanac by HTTP Archive

https://www.ietf.org/
https://github.com/harendra

Joe Viggiano

joeviggiano

Joe Viggiano is a Media & Entertainment Solutions Architect at Amazon Web

Services helping customers deliver media content at scale.

Part IV Chapter 22 : CDN

2022 Web Almanac by HTTP Archive 693

https://github.com/joeviggiano

694 2022 Web Almanac by HTTP Archive

Part IV Chapter 23

HTTP

Written by Vaspol Ruamviboonsuk
Reviewed by Barry Pollard, Robin Marx, and Lucas Pardue
Analyzed by Vaspol Ruamviboonsuk
Edited by Barry Pollard

Introduction

HTTP is the cornerstone of the web ecosystem, providing the foundation for exchanging data

and enabling various types of internet services. It has gone through several evolutions

especially in the last few years with the introduction of HTTP/2 and, more recently, HTTP/3.

HTTP/2 attempted to address shortcomings of HTTP/1.1 such as the limited number of

concurrent requests. At first glance, HTTP/3 is similar to HTTP/2 as the semantics are the same,

but under the hood HTTP/3 is radically different from its predecessors in that it utilizes QUIC

as the transport protocol instead of TCP.

As HTTP/2 provides the basis for HTTP/3, we analyze key features of HTTP/2 such as HTTP/2

Push, prioritization, and multiplexing to understand how much they are still used. We also

present case studies from various deployment experiences of these features. For example,

HTTP/2 Push allows web servers to preemptively send the response of a resource before the

client requests it.

Part IV Chapter 23 : HTTP

2022 Web Almanac by HTTP Archive 695

While both push and prioritization should theoretically be beneficial to end users, they can be

challenging to use. We discuss new technologies that can potentially be used as alternatives to

underperforming HTTP/2 features. For example, 103 Early Hints responses provides an

alternative to HTTP/2 server push that achieves the same performance goal of preemptive

resource fetches.

Finally, we dive into HTTP/3 by discussing how it is an improvement over HTTP/2 and by

analyzing the current support for HTTP/3, where we observe some increase from 2021. We

hope that the data points provided in this chapter will provide some insights on future trends

and pointers to new technologies that developers can experiment with to improve user

experiences.

Evolution of HTTP

HTTP is one of the most important Internet protocols because it powers communications for

the web. It began as a text-based protocol through the first three versions: 0.9, 1.0, and 1.1.

With its extensibility, HTTP/1.1 was the current HTTP version for 15 years until 2015.

HTTP/2 was a major milestone of HTTP as it evolved from a text-based protocol to a binary-

based one. Where HTTP/1.1 supports only serial request and response exchanges, HTTP/2

supports concurrency. Clients and servers represent requests and responses as streams of

binary frames. Streams have unique identifiers, which allows frames to be multiplexed and

interleaved.

The latest version of HTTP is HTTP/3, which was recently standardized by the IETF in June

2022841. While HTTP/3 implements the same features as HTTP/2, there is a vital difference in

how it is transported across the internet. HTTP/3 is built on top of QUIC, a UDP-based

protocol, which alleviates some of the performance issues that HTTP/2 can face on a lossy

network.

HTTP/2 adoption

With various HTTP versions introduced over the years, we begin by describing the current

state of HTTP version adoption. We measure the HTTP version usage by taking all resources in

the 2022 Web Almanac dataset and identify which version of HTTP each resource was served

on.

However, with our setup, it is not trivial to accurately count resources delivered on HTTP/3, as

841. https://www.rfc-editor.org/rfc/rfc9114.html

Part IV Chapter 23 : HTTP

696 2022 Web Almanac by HTTP Archive

https://www.rfc-editor.org/rfc/rfc9114.html
https://www.rfc-editor.org/rfc/rfc9114.html

clients have to discover HTTP/3 support, typically via the alt-svc HTTP response header. By

the time the client receives the alt-svc header however, it has already completed the

protocol negotiation for HTTP/1.1 or HTTP/2. Only after this point can the client upgrade the

protocol to HTTP/3 on subsequent requests or page loads. As such, our data never captures a

full HTTP/3 page load.

With the discovery of HTTP/3 being so delayed via the alt-svc HTTP header mechanism, our

measurements may undercount resources that would have been delivered on HTTP/3 for

normal browsing users. Thus, we group resources delivered on HTTP/2 and HTTP/3 together as

HTTP/2+.

First, to understand the status quo, we measure the prevalence of HTTP/2+ adoption. In June

2022, we observed that roughly 77% of requests from our loads use HTTP/2+. This is a 5%

increase in HTTP/2+ adoption from July 2021842, where we observed that 73% of the requests

were on HTTP/2+.

Figure 23.1. Adoption of HTTP/2 and above as a percentage of requests.

842. https://almanac.httparchive.org/en/2021/http#adoption-by-request

Part IV Chapter 23 : HTTP

2022 Web Almanac by HTTP Archive 697

https://developer.mozilla.org/docs/Web/HTTP/Headers/Alt-Svc
https://developer.mozilla.org/docs/Web/HTTP/Headers/Alt-Svc
https://almanac.httparchive.org/static/images/2022/http/http2-adoption-per-request.png
https://almanac.httparchive.org/static/images/2022/http/http2-adoption-per-request.png
https://almanac.httparchive.org/en/2021/http#adoption-by-request
https://almanac.httparchive.org/en/2021/http#adoption-by-request

With the increase in HTTP/2+ adoption, we would like to understand the driving forces that

enable the increase. First, we analyze the HTTP/2+ adoption at per-website granularity by

checking whether the landing page of the website was served on HTTP/2+. We observed that

approximately 66% of the websites from our dataset, on both desktop and mobile settings,

were served on HTTP/2+, whereas this was only true for approximately 60% of the websites in

our dataset in 2021843. This increase is a positive trend which suggests that websites are ready

and moving towards an up-to-date version of HTTP.

Figure 23.2. Adoption of HTTP/2 and above as a percentage of websites.

843. https://almanac.httparchive.org/en/2021/http#adoption-of-http2

Part IV Chapter 23 : HTTP

698 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/http/http2-adoption-per-site.png
https://almanac.httparchive.org/static/images/2022/http/http2-adoption-per-site.png
https://almanac.httparchive.org/en/2021/http#adoption-of-http2
https://almanac.httparchive.org/en/2021/http#adoption-of-http2

Another factor in enabling HTTP/2+ adoption is resources served from CDN. Similar to the

observation in our 2021 analysis844, we noticed that most resources served from a CDN were on

HTTP/2+. The figure above shows that 95% of the requests served from CDN were delivered

on HTTP/2+.

Benefits of HTTP/2 and HTTP/3

Next, we focus on how features that HTTP/2 introduced are being adopted. We primarily focus

on three notable concepts: multiplexing requests over a single network connection, resource

prioritization, and HTTP/2 Push.

Multiplexing requests over a single connection

An important feature of HTTP/2 is multiplexing requests over a single TCP connection. This is a

substantial improvement to earlier versions of HTTP where only one concurrent request is

allowed on a TCP connection and, in most cases, only six parallel TCP connections are allowed

to a hostname. HTTP/2 introduces the concept of a stream; a logical representation of a

connection that is used for resource delivery. Multiple HTTP/2 streams can then be multiplexed

onto a single TCP connection thereby removing the per-connection concurrency limitations.

Figure 23.3. Adoption of HTTP/2 and above as a percentage of requests served from a CDN.

844. https://almanac.httparchive.org/en/2021/http#adoption-by-cdns

Part IV Chapter 23 : HTTP

2022 Web Almanac by HTTP Archive 699

https://almanac.httparchive.org/static/images/2022/http/http2-adoption-per-cdn.png
https://almanac.httparchive.org/static/images/2022/http/http2-adoption-per-cdn.png
https://almanac.httparchive.org/en/2021/http#adoption-by-cdns

An implication of multiplexing requests into one TCP connection is the reduction of

connections required during page loads. Similar to our findings in 2021845, pages with HTTP/2

enabled we observe fewer connections than pages that do not have HTTP/2 enabled.

The figure above shows that the median mobile page has 12 connections established during the

page load when HTTP/2 is enabled. In contrast, the median page without HTTP/2 has 15

connections established—an overhead of 3 additional connections. However, the overhead

worsens at higher percentiles. The page at the 90th percentile with HTTP/2 enabled has 32

connections, whereas the 90th percentile page without HTTP/2 enabled has 38 connections—a

6 additional connection overhead. These trends are the same between desktop and mobile

versions of websites.

Given that we observe an increase in HTTP/2 adoption over the year, it is unsurprising that the

number of TCP connections overall has been gradually decreasing over the years. A longitudinal

view from HTTP Archive846 shows that the median number of connections established

decreased by 9 connections, from 22 connections in 2017 to 13 connections in 2022.

Resource prioritization

With HTTP/2, clients can multiplex847 multiple requests on the same connection. An implication

Figure 23.4. Connections used per page by HTTP version.

845. https://almanac.httparchive.org/en/2021/http#number-of-connections
846. https://httparchive.org/reports/state-of-the-web#tcp
847. https://stackoverflow.com/questions/36517829/what-does-multiplexing-mean-in-http-2/36519379#36519379

Part IV Chapter 23 : HTTP

700 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/en/2021/http#number-of-connections
https://almanac.httparchive.org/static/images/2022/http/connections-comparison-per-page.png
https://almanac.httparchive.org/static/images/2022/http/connections-comparison-per-page.png
https://httparchive.org/reports/state-of-the-web#tcp
https://httparchive.org/reports/state-of-the-web#tcp
https://stackoverflow.com/questions/36517829/what-does-multiplexing-mean-in-http-2/36519379#36519379

is that this can negatively impact delivery of render-blocking resources if many resources are

inflight at the same time. This can lead to poor user experience. In its original standard848, HTTP/

2 attempts to address this by proposing a priority tree that clients construct during page load

and which web servers can use to prioritize sending more important responses. However, this

approach is difficult to use and many web servers and CDNs either did not correctly implement

it or ignored it849. Because of this, it was suggested in a later iteration of HTTP/2850 that a

different scheme should be used.

With the challenges to HTTP/2 priorities, a new prioritization scheme was needed. The

Extensible Prioritization Scheme for HTTP851 was developed separately from HTTP/3 and was

standardized in June 2022. In this scheme, clients can explicitly assign a priority composed of

two parameters via the priority HTTP header or the PRIORITY_UPDATE frame. The first

parameter, urgency , tells the server the priority of the requested resource. The second

parameter, incremental , tells the server whether a resource can be partially used at the

client (for example, partially displaying an image as parts of it arrive). Defining the scheme as a

HTTP header and as the PRIORITY_UPDATE frame makes it extensible as both formats were

designed to provide future extensibility. At the time of writing, the scheme has been deployed

for HTTP/3 in Safari, Firefox, and Chrome.

While most of the resource priorities are decided by the browser itself, developers can now also

use the new priority hints852 to tweak the priority of a particular resource. Priority hints can be

specified via the fetchpriority attribute in the HTML. For example, suppose that a website

would like to prioritize a hero image, it can add fetchpriority to the image tag:

Priority hints can be very effective in improving user experience. For example, Etsy conducted

an experiment853 and observed a 4% improvement in Largest Contentful Paint (LCP) on product

listing pages that included priority hints for certain images.

Figure 23.5. Mobile pages using Priority Hints.

1.2%
848. https://www.rfc-editor.org/rfc/rfc7540#page-25
849. https://github.com/andydavies/http2-prioritization-issues
850. https://www.rfc-editor.org/rfc/rfc9113.html#section-5.3
851. https://httpwg.org/specs/rfc9218.html
852. https://web.dev/priority-hints/
853. https://www.etsy.com/codeascraft/priority-hints-what-your-browser-doesnt-know-yet

Part IV Chapter 23 : HTTP

2022 Web Almanac by HTTP Archive 701

https://www.rfc-editor.org/rfc/rfc7540#page-25
https://github.com/andydavies/http2-prioritization-issues
https://github.com/andydavies/http2-prioritization-issues
https://www.rfc-editor.org/rfc/rfc9113.html#section-5.3
https://httpwg.org/specs/rfc9218.html
https://web.dev/priority-hints/
https://www.etsy.com/codeascraft/priority-hints-what-your-browser-doesnt-know-yet
https://www.etsy.com/codeascraft/priority-hints-what-your-browser-doesnt-know-yet

While Priority Hints was only recently released at the end of April 2022 as part of Chrome 101,

it has a very promising adoption as we observe that approximately 1% of desktop web pages

and 1.2% of mobile web pages have already adopted priority hints in August 2022. With its

potential to improve user experience with relative ease, it may be a good feature to experiment

with.

HTTP/2 Push

HTTP/2 Push allows web servers to pre-emptively send a response to a request before that

request is even sent by the client. For example, a website provider can push a resource that will

be used during a page load to the end user along with the main HTML.

In 2021, as shown in the figure above, the percentage of websites using push was very low at

1.26% for mobile. However, in this year’s analysis, the number of websites using push decreases

to 0.66% for mobile websites. This marks the first decrease in push usage since 2020.

The decrease in websites using push is likely because it is difficult to use effectively854. For

example, websites cannot accurately know whether a resource being pushed already exists in

the client’s cache. If it is in the client’s cache, the bandwidth used for pushing the resource is

wasteful.

Figure 23.6. Usage of HTTP/2 Push.

854. https://jakearchibald.com/2017/h2-push-tougher-than-i-thought/

Part IV Chapter 23 : HTTP

702 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/http/h2-push-usage.png
https://almanac.httparchive.org/static/images/2022/http/h2-push-usage.png
https://jakearchibald.com/2017/h2-push-tougher-than-i-thought/

With the difficulties, Chrome decided to deprecate HTTP/2 Push855 starting from Chrome

version 106856. Despite push officially still being a part of the HTTP/3 standard, Chrome—which

the HTTP Archive crawler uses—never implemented push for HTTP/3 connections, which

might further explain the reduction in usage as sites moved to that version and lost the ability

to push.

Alternatives to HTTP/2 Push

Given the challenges to using HTTP/2 Push, and it’s deprecation from Chrome, developers may

be wondering about alternatives.

Preload

Developers can use Preload as one alternative to pre-emptively request a resource that will be

used later in a page load. This is enabled by including <link rel="preload"> in the

<head> section of the HTML. For example:

<link rel="preload" href="/css/style.css" as="style">

Or as a Link HTTP header:

Link: </css/style.css>; rel="preload"; as="style"

Either option allows web servers to include additional URLs or important resources. The client

can then issue requests for the provided URLs before the resources are normally discovered

during the page load.

While not quite as fast as proactively pushing resources, this is a lot safer in allowing the

browser to choose whether to fetch those resources or not if—for example—it already has a

copy in the cache.

855. https://groups.google.com/a/chromium.org/g/blink-dev/c/K3rYLvmQUBY/m/ho4qP49oAwAJ
856. https://developer.chrome.com/blog/removing-push/

Part IV Chapter 23 : HTTP

2022 Web Almanac by HTTP Archive 703

https://groups.google.com/a/chromium.org/g/blink-dev/c/K3rYLvmQUBY/m/ho4qP49oAwAJ
https://developer.chrome.com/blog/removing-push/
https://developer.chrome.com/blog/removing-push/
https://developer.mozilla.org/docs/Web/HTML/Link_types/preload
https://developer.mozilla.org/docs/Web/HTML/Link_types/preload

We observed a large number of pages in our dataset include a <link rel="preload">
tag—approximately 25% on both desktop and mobile.

103 Early Hints

In 2017, the 103 Early Hints status code was proposed857 and Chrome added support for it this

year858.

Early Hints can be used to send interim HTTP responses before the final response of the

requested object. They can boost performance by leveraging the fact that web servers often

require some time to prepare a response, especially for the main HTML document if it is

dynamically rendered.

One use case of Early Hints is to deliver Link: rel="preload" for resources to

preemptively fetch, or Link: rel="preconnect" to preemptively connect to other

domains. Other headers can conceptually also be conveyed, though this is not supported by any

browser.

Early hints can be a better alternative than push because clients retain greater control over

how the resources are fetched, but still allow an improvement on just adding preloads and

preconnects to the main document HTML. Furthermore, Early Hints can potentially be used for

3rd party resources, which was not possible with push, though again this is not yet supported

on any browser859.

There are studies showing that adopting Early Hints can improve user experience. For example,

Shopify observed 20-30% LCP improvements860 in their lab study. We observe that

Figure 23.7. Pages using <link rel="preload"> .

25%

Figure 23.8. Desktop pages using 103 Early Hints.

1.6%

857. https://www.rfc-editor.org/rfc/rfc8297
858. https://developer.chrome.com/blog/early-hints/
859. https://developer.chrome.com/blog/early-hints/#current-limitations
860. https://blog.cloudflare.com/early-hints-performance/

Part IV Chapter 23 : HTTP

704 2022 Web Almanac by HTTP Archive

https://www.rfc-editor.org/rfc/rfc8297
https://developer.chrome.com/blog/early-hints/
https://developer.chrome.com/blog/early-hints/
https://developer.chrome.com/blog/early-hints/#current-limitations
https://developer.chrome.com/blog/early-hints/#current-limitations
https://blog.cloudflare.com/early-hints-performance/

approximately 1.6% of websites in our dataset have adopted Early Hints even at this early stage

and most of the adoption (1.5%) stems from websites running on Shopify’s platform.

With the 25% of websites including <link rel="preload"> with the page response, there

is significant potential to convert such link nodes to Early Hints.

HTTP/3

In the remainder of this section, we turn our focus to HTTP/3, as it is the future of HTTP and

was standardized in June 2022861. In particular, we explore the improvements of HTTP/3 over its

predecessors and how much support it currently has. For a more detailed explanation on HTTP/

3, you can refer to this excellent series of posts862 from Robin Marx863, who also helped review

this chapter.

Benefits of HTTP/3

While HTTP/2 introduced various improvements over its predecessor, there remain further

challenges and opportunities for the protocol. For example, even though multiplexing of

requests onto a single TCP connection alleviated head-of-line blocking issues for each request,

delivering requests using this method can still be inefficient864. This is because lost TCP packets

can prevent properly received later TCP packets from being processed until their

retransmission arrives—even if the later TCP packet is for a separate HTTP stream. TCP has no

concept of the multiplexing happening in the higher, HTTP protocol and so holds up all streams.

HTTP/3 aims to improve upon the shortcomings of HTTP/2 and to do that it is built on QUIC, a

UDP-based transport protocol. QUIC addresses TCP head-of-line blocking by implementing

reliable packet delivery on top of UDP at a per-stream granularity.

HTTP/3 support

To advertise that HTTP/3 is supported, web servers rely on the alt-svc in the HTTP

response header. The value of alt-svc header contains a list of protocols supported by the

server.

861. https://www.rfc-editor.org/rfc/rfc9114.html
862. https://www.smashingmagazine.com/2021/08/http3-core-concepts-part1/
863. https://twitter.com/programmingart
864. https://calendar.perfplanet.com/2020/head-of-line-blocking-in-quic-and-http-3-the-details/

Part IV Chapter 23 : HTTP

2022 Web Almanac by HTTP Archive 705

https://www.rfc-editor.org/rfc/rfc9114.html
https://www.smashingmagazine.com/2021/08/http3-core-concepts-part1/
https://twitter.com/programmingart
https://calendar.perfplanet.com/2020/head-of-line-blocking-in-quic-and-http-3-the-details/

For example, in September 2022, the alt-svc value in the response for

https://www.cloudflare.com is h3=":443"; ma=86400, h3-29=":443"; ma=86400 as

shown in the screenshot below. h3 and h3-29 tell us that Cloudflare supports HTTP/3 and

IETF draft 29 of HTTP/3 over UDP port 443. There is also a proposal to speed up the discovery

of HTTP/3 as part of DNS lookup; for more details see this post from Cloudflare865.

We analyze HTTP/3 adoption by identifying a resource that was served on HTTP/3 or its

response header contained an alt-svc header with either h3 or h3-29 as one of the

protocols advertised. This allows us to understand if HTTP/3 could be used, and ignores the

limitations mentioned above, of the fresh instance run by our crawler, which has yet to see the

alt-svc header.

Figure 23.9. alt-svc response header example.

865. https://blog.cloudflare.com/speeding-up-https-and-http-3-negotiation-with-dns/

Part IV Chapter 23 : HTTP

706 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/http/alt-svc-example.png
https://almanac.httparchive.org/static/images/2022/http/alt-svc-example.png
https://www.cloudflare.com/
https://blog.cloudflare.com/speeding-up-https-and-http-3-negotiation-with-dns/

The figure above shows that there is a 5 percentage point increase, from 10% to 15%, in the

percentage of requests with HTTP/3 support since last year’s Web Almanac. The same increase

was observed on both desktop and mobile requests.

Similar to HTTP/2+ adoption, most of the HTTP/3 support originates from CDNs. We expect

the support to grow in the future when more CDNs start to support HTTP/3.

Conclusion

This past year was an eventful year for the HTTP protocol especially with HTTP/3 being

standardized. We continue to observe high HTTP/2 utilization and see a strong upcoming

HTTP/3 support from web servers.

In addition, we have seen strong growth in the ecosystem for technologies that address some of

the critical challenges in HTTP/2. 103 Early Hints provides a safer alternative for Server Push

and its client support has taken a large step forward with Chrome now supporting it. A new

standard for HTTP Prioritization was finalized; major browsers and some web servers already

support it for HTTP/3. Furthermore, Priority Hints was added to the web platform to allow

clients to further refine prioritization on both HTTP/2 and HTTP/3 and early experiments have

yielded promising user experience improvements.

This is an exciting time going forward for the HTTP protocol and the web ecosystem. We are

Figure 23.10. HTTP/3 support on requests.

Part IV Chapter 23 : HTTP

2022 Web Almanac by HTTP Archive 707

https://almanac.httparchive.org/static/images/2022/http/h3-support-per-request.png
https://almanac.httparchive.org/static/images/2022/http/h3-support-per-request.png

excited to see how these new technologies will get adopted and what effects they will have on

user experience.

Author

Vaspol Ruamviboonsuk

@paivaspol paivaspol vaspol-ruamviboonsuk-7898b824

Vaspol Ruamviboonsuk is a Software Engineer at Microsoft. He completed his

PhD from the University of Michigan conducting research on systems to make

web pages load faster. You can connect with him on LinkedIn866.

866. https://www.linkedin.com/in/vaspol-ruamviboonsuk-7898b824/

Part IV Chapter 23 : HTTP

708 2022 Web Almanac by HTTP Archive

https://twitter.com/paivaspol
https://github.com/paivaspol
https://www.linkedin.com/in/vaspol-ruamviboonsuk-7898b824/
https://www.linkedin.com/in/vaspol-ruamviboonsuk-7898b824/

Appendix A

Methodology

Overview

The Web Almanac is a project organized by HTTP Archive867. HTTP Archive was started in 2010

by Steve Souders with the mission to track how the web is built. It evaluates the composition of

millions of web pages on a monthly basis and makes its terabytes of metadata available for

analysis on BigQuery868.

The Web Almanac’s mission is to become an annual repository of public knowledge about the

state of the web. Our goal is to make the data warehouse of HTTP Archive even more

867. https://httparchive.org
868. https://httparchive.org/faq#how-do-i-use-bigquery-to-write-custom-queries-over-the-data

Appendix A : Methodology

2022 Web Almanac by HTTP Archive 709

https://httparchive.org/
https://httparchive.org/faq#how-do-i-use-bigquery-to-write-custom-queries-over-the-data

accessible to the web community by having subject matter experts provide contextualized

insights.

The 2022 edition of the Web Almanac is broken into four parts: content, experience, publishing,

and distribution. Within each part, several chapters explore their overarching theme from

different angles. For example, Part II explores different angles of the user experience in the

Performance, Security, and Accessibility chapters, among others.

About the dataset

The HTTP Archive dataset is continuously updating with new data monthly. For the 2022

edition of the Web Almanac, unless otherwise noted in the chapter, all metrics were sourced

from the June 2022 crawl. These results are publicly queryable869 on BigQuery in tables prefixed

with 2022_06_01 .

All of the metrics presented in the Web Almanac are publicly reproducible using the dataset on

BigQuery. You can browse the queries used by all chapters in our GitHub repository870.

Please note that some of these queries are quite large and can be expensive871 to run yourself. For help

controlling your spending, refer to Tim Kadlec’s post Using BigQuery Without Breaking the Bank872.

For example, to understand the median number of bytes of JavaScript per desktop and mobile

page, see bytes_2022.sql873:

#standardSQL

Sum of JS request bytes per page (2022)

SELECT

 percentile,

 _TABLE_SUFFIX AS client,

 APPROX_QUANTILES(bytesJs / 1024, 1000)[OFFSET(percentile *

10)] AS js_kilobytes

FROM

869. https://github.com/HTTPArchive/httparchive.org/blob/main/docs/gettingstarted_bigquery.md
870. https://github.com/HTTPArchive/almanac.httparchive.org/tree/main/sql/2022
871. https://cloud.google.com/bigquery/pricing
872. https://timkadlec.com/remembers/2019-12-10-using-bigquery-without-breaking-the-bank/
873. https://github.com/HTTPArchive/almanac.httparchive.org/blob/main/sql/2022/javascript/bytes_2022.sql

Appendix A : Methodology

710 2022 Web Almanac by HTTP Archive

https://github.com/HTTPArchive/httparchive.org/blob/main/docs/gettingstarted_bigquery.md
https://github.com/HTTPArchive/almanac.httparchive.org/tree/main/sql/2022
https://cloud.google.com/bigquery/pricing
https://timkadlec.com/remembers/2019-12-10-using-bigquery-without-breaking-the-bank/
https://github.com/HTTPArchive/almanac.httparchive.org/blob/main/sql/2022/javascript/bytes_2022.sql

 `httparchive.summary_pages.2022_06_01_*`,

 UNNEST([10, 25, 50, 75, 90, 100]) AS percentile

GROUP BY

 percentile,

 client

ORDER BY

 client,

 percentile

Results for each metric are publicly viewable in chapter-specific spreadsheets, for example

JavaScript results874. Links to the raw results and queries are available at the bottom of each

chapter. Metric-specific results and queries are also linked directly from each figure.

Websites

There are 8,360,179 websites in the dataset. Among those, 7,905,956 are mobile websites and

5,428,235 are desktop websites. Most websites are included in both the mobile and desktop

subsets.

HTTP Archive sources the URLs for its websites from the Chrome UX Report. The Chrome UX

Report is a public dataset from Google that aggregates user experiences across millions of

websites actively visited by Chrome users. This gives us a list of websites that are up-to-date

and a reflection of real-world web usage. The Chrome UX Report dataset includes a form factor

dimension, which we use to get all of the websites accessed by desktop or mobile users.

The June 2022 HTTP Archive crawl used by the Web Almanac used the most recently available

Chrome UX Report release for its list of websites. The 202204 dataset was released on May 3,

2022 and captures websites visited by Chrome users during the month of April.

Due to resource limitations, the HTTP Archive previously could only test one page from each

website in the Chrome UX report and only home pages were included. Be aware that this will

introduce some bias into the results because a home page is not necessarily representative of

the entire website. This year, we introduced secondary pages875, after the Web Almanac project

was beginning and some chapters use this new data. Most chapters, however, used just the

874. https://docs.google.com/spreadsheets/d/1vOeFUyfEtWRen3Xj57ZsWav40n5tlcJoV0HmAxmNE_I/edit?usp=sharing
875. https://discuss.httparchive.org/t/improving-the-http-archive-pipeline-and-dataset-by-10x/2372

Appendix A : Methodology

2022 Web Almanac by HTTP Archive 711

https://docs.google.com/spreadsheets/d/1vOeFUyfEtWRen3Xj57ZsWav40n5tlcJoV0HmAxmNE_I/edit?usp=sharing
https://discuss.httparchive.org/t/improving-the-http-archive-pipeline-and-dataset-by-10x/2372

home pages. We expect future analysis to make much more use of this new dataset.

HTTP Archive is also considered a lab testing tool, meaning it tests websites from a datacenter

and does not collect data from real-world user experiences. All pages are tested with an empty

cache in a logged out state, which may not reflect how real users would access them.

Metrics

HTTP Archive collects thousands of metrics about how the web is built. It includes basic metrics

like the number of bytes per page, whether the page was loaded over HTTPS, and individual

request and response headers. The majority of these metrics are provided by WebPageTest,

which acts as the test runner for each website.

Other testing tools are used to provide more advanced metrics about the page. For example,

Lighthouse is used to run audits against the page to analyze its quality in areas like accessibility

and SEO. The Tools section below goes into each of these tools in more detail.

To work around some of the inherent limitations of a lab dataset, the Web Almanac also makes

use of the Chrome UX Report for metrics on user experiences, especially in the area of web

performance.

Some metrics are completely out of reach. For example, we don’t necessarily have the ability to

detect the tools used to build a website. If a website is built using create-react-app, we could

tell that it uses the React framework, but not necessarily that a particular build tool is used.

Unless these tools leave detectible fingerprints in the website’s code, we’re unable to measure

their usage.

Other metrics may not necessarily be impossible to measure but are challenging or unreliable.

For example, aspects of web design are inherently visual and may be difficult to quantify, like

whether a page has an intrusive modal dialog.

Tools

The Web Almanac is made possible with the help of the following open source tools.

WebPageTest

WebPageTest876 is a prominent web performance testing tool and the backbone of HTTP

876. https://www.webpagetest.org/

Appendix A : Methodology

712 2022 Web Almanac by HTTP Archive

https://www.webpagetest.org/

Archive. We use a private instance877 of WebPageTest with private test agents, which are the

actual browsers that test each web page. Desktop and mobile websites are tested under

different configurations:

Desktop websites are run from within a desktop Chrome environment on a Linux VM. The

network speed is equivalent to a cable connection.

Mobile websites are run from within a mobile Chrome environment on an emulated Moto G4

device with a network speed equivalent to a 4G connection.

Test agents run from various Google Cloud Platform locations878 based in the USA.

HTTP Archive’s private instance of WebPageTest is kept in sync with the latest public version

and augmented with custom metrics879, which are snippets of JavaScript that are evaluated on

each website at the end of the test.

The results of each test are made available as a HAR file880, a JSON-formatted archive file

containing metadata about the web page.

Lighthouse

Lighthouse881 is an automated website quality assurance tool built by Google. It audits web

pages to make sure they don’t include user experience antipatterns like unoptimized images

Config Desktop Mobile

Device Linux VM Emulated Moto G4

User Agent

Mozilla/5.0 (X11; Linux x86_64)

AppleWebKit/537.36 (KHTML,

like Gecko) Chrome/

102.0.5005.61 Safari/537.36

PTST/220609.133020

Mozilla/5.0 (Linux; Android 8.1.0; Moto

G (4)) AppleWebKit/537.36 (KHTML,

like Gecko) Chrome/102.0.5005.115

Mobile Safari/537.36 PTST/

220609.133020

Location Google Cloud Locations, USA Google Cloud Locations, USA

Connection Cable (5/1 Mbps 28ms RTT) 4G (9 Mbps 170ms RTT)

Viewport 1376 x 768px 512 x 360px

877. https://docs.webpagetest.org/private-instances/
878. https://cloud.google.com/compute/docs/regions-zones/#locations
879. https://github.com/HTTPArchive/custom-metrics
880. https://en.wikipedia.org/wiki/HAR_(file_format)
881. https://developer.chrome.com/docs/lighthouse/overview/

Appendix A : Methodology

2022 Web Almanac by HTTP Archive 713

https://docs.webpagetest.org/private-instances/
https://cloud.google.com/compute/docs/regions-zones/#locations
https://github.com/HTTPArchive/custom-metrics
https://en.wikipedia.org/wiki/HAR_(file_format)
https://developer.chrome.com/docs/lighthouse/overview/

and inaccessible content.

HTTP Archive runs the latest version of Lighthouse for all pages. This is the first year that

Lighthouse testing is done for both mobile and desktop pages. As of the June 2022 crawl, HTTP

Archive used the 9.6.2882 versions of Lighthouse.

Lighthouse is run as its own distinct test from within WebPageTest, but it has its own

configuration profile:

For more information about Lighthouse and the audits available in HTTP Archive, refer to the

Lighthouse developer documentation883.

Wappalyzer

Wappalyzer884 is a tool for detecting technologies used by web pages. There are 98 categories885

of technologies tested, ranging from JavaScript frameworks, to CMS platforms, and even

cryptocurrency miners. There are over 3,805 supported technologies (an increase from 2,600

last year).

HTTP Archive runs the latest version of Wappalyzer for all web pages. As of July 2022 the Web

Almanac used the 6.10.26 version886 of Wappalyzer.

Wappalyzer powers many chapters that analyze the popularity of developer tools like

WordPress, Bootstrap, and jQuery. For example, the CMS chapter relies heavily on the

respective CMS887 category of technologies detected by Wappalyzer.

All detection tools, including Wappalyzer, have their limitations. The validity of their results will

always depend on how accurate their detection mechanisms are. The Web Almanac will add a

note in every chapter where Wappalyzer is used but its analysis may not be accurate due to a

Config Desktop Mobile

CPU slowdown N/A 1x/4x

Download throughput 1.6 Mbps 1.6 Mbps

Upload throughput 0.768 Mbps 0.768 Mbps

RTT 150 ms 150 ms

882. https://github.com/GoogleChrome/lighthouse/releases/tag/v9.6.2
883. https://developer.chrome.com/docs/lighthouse/overview/
884. https://www.wappalyzer.com/
885. https://www.wappalyzer.com/technologies
886. https://github.com/AliasIO/Wappalyzer/releases/tag/v6.10.26
887. https://www.wappalyzer.com/categories/cms

Appendix A : Methodology

714 2022 Web Almanac by HTTP Archive

https://github.com/GoogleChrome/lighthouse/releases/tag/v9.6.2
https://developer.chrome.com/docs/lighthouse/overview/
https://www.wappalyzer.com/
https://www.wappalyzer.com/technologies
https://github.com/AliasIO/Wappalyzer/releases/tag/v6.10.26
https://www.wappalyzer.com/categories/cms

specific reason.

Chrome UX Report

The Chrome UX Report888 is a public dataset of real-world Chrome user experiences.

Experiences are grouped by websites’ origin, for example https://www.example.com . The

dataset includes distributions of UX metrics like paint, load, interaction, and layout stability. In

addition to grouping by month, experiences may also be sliced by dimensions like country-level

geography, form factor (desktop, phone, tablet), and effective connection type (4G, 3G, etc.).

The Chrome UX Report dataset includes relative website ranking data889. These are referred to

as rank magnitudes because, as opposed to fine-grained ranks like the #1 or #116 most popular

websites, websites are grouped into rank buckets from the top 1k, top 10k, up to the top 10M.

Each website is ranked according to the number of eligible890 page views on all of its pages

combined. This year's Web Almanac makes extensive use of this new data as a way to explore

variations in the way the web is built by site popularity.

For Web Almanac metrics that reference real-world user experience data from the Chrome UX

Report, the June 2022 dataset (202206) is used.

You can learn more about the dataset in the Using the Chrome UX Report on BigQuery891 guide

on web.dev892.

Blink Features

Blink Features893 are indicators flagged by Chrome whenever a particular web platform feature

is detected to be used.

We use Blink Features to get a different perspective on feature adoption. This data is especially

useful to distinguish between features that are implemented on a page and features that are

actually used. For example, the CSS chapter's section on Grid layout uses Blink Features data to

measure whether some part of the actual page layout is built with Grid. By comparison, many

more pages happen to include an unused Grid style in their stylesheets. Both stats are

interesting in their own way and tell us something about how the web is built.

Blink Features are reported by WebPageTest as part of our regular testing.

888. https://developer.chrome.com/docs/crux/
889. https://developer.chrome.com/blog/crux-rank-magnitude/
890. https://developer.chrome.com/docs/crux/methodology/#eligibility
891. https://web.dev/chrome-ux-report-bigquery
892. https://web.dev/
893. https://chromium.googlesource.com/chromium/src/+/HEAD/docs/use_counter_wiki.md

Appendix A : Methodology

2022 Web Almanac by HTTP Archive 715

https://developer.chrome.com/docs/crux/
https://developer.chrome.com/blog/crux-rank-magnitude/
https://developer.chrome.com/docs/crux/methodology/#eligibility
https://web.dev/chrome-ux-report-bigquery
https://web.dev/
https://chromium.googlesource.com/chromium/src/+/HEAD/docs/use_counter_wiki.md

Third Party Web

Third Party Web894 is a research project by Patrick Hulce, author of the 2019 Third Parties

chapter, that uses HTTP Archive and Lighthouse data to identify and analyze the impact of third

party resources on the web.

Domains are considered to be a third party provider if they appear on at least 50 unique pages.

The project also groups providers by their respective services in categories like ads, analytics,

and social.

Several chapters in the Web Almanac use the domains and categories from this dataset to

understand the impact of third parties.

Rework CSS

Rework CSS895 is a JavaScript-based CSS parser. It takes entire stylesheets and produces a

JSON-encoded object distinguishing each individual style rule, selector, directive, and value.

This special purpose tool significantly improved the accuracy of many of the metrics in the CSS

chapter. CSS in all external stylesheets and inline style blocks for each page were parsed and

queried to make the analysis possible. See this thread896 for more information about how it was

integrated with the HTTP Archive dataset on BigQuery.

Rework Utils

This year’s CSS chapter revisits many of the metrics introduced in 2020's CSS chapter, which

was led by Lea Verou. Lea wrote Rework Utils897 to more easily extract insights from Rework

CSS's output. Most of the stats you see in the CSS chapter continue to be powered by these

scripts.

Parsel

Parsel898 is a CSS selector parser and specificity calculator, originally written by 2020 CSS

chapter lead Lea Verou and open sourced as a separate library. It is used extensively in all CSS

metrics that relate to selectors and specificity.

894. https://www.thirdpartyweb.today/
895. https://github.com/reworkcss/css
896. https://discuss.httparchive.org/t/analyzing-stylesheets-with-a-js-based-parser/1683
897. https://github.com/LeaVerou/rework-utils
898. https://projects.verou.me/parsel/

Appendix A : Methodology

716 2022 Web Almanac by HTTP Archive

https://www.thirdpartyweb.today/
https://almanac.httparchive.org/en/2019/third-parties
https://github.com/reworkcss/css
https://discuss.httparchive.org/t/analyzing-stylesheets-with-a-js-based-parser/1683
https://almanac.httparchive.org/en/2019/contributors#LeaVerou
https://github.com/LeaVerou/rework-utils
https://projects.verou.me/parsel/
https://almanac.httparchive.org/en/2019/css

Analytical process

The Web Almanac took about a year to plan and execute with the coordination of more than a

hundred contributors from the web community. This section describes why we chose the

chapters you see in the Web Almanac, how their metrics were queried, and how they were

interpreted.

Planning

The 2022 Web Almanac kicked off in March 2022 with a call for contributors899. We initialized

the project with all 26 chapters from previous years and the community suggested additional

topics that became two new chapters this year: Interoperability and Sustainability.

As we stated in the inaugural year’s Methodology:

To that end, this year we’ve continued our author selection process900:

• Previous authors were specifically discouraged from writing again to make room for

different perspectives.

• Everyone endorsing 2022 authors were asked to be especially conscious not to

nominate people who all look or think alike.

• The project leads reviewed all of the author nominations and made an effort to

select authors who will bring new perspectives and amplify the voices of

underrepresented groups in the community.

We hope to iterate on this process in the future to ensure that the Web Almanac is a more

diverse and inclusive project with contributors from all backgrounds.

Analysis

In April and May 2022, data analysts worked with authors and peer reviewers to come up with

a list of metrics that would need to be queried for each chapter. In some cases, custom metrics901

One explicit goal for future editions of the Web Almanac is to encourage even

more inclusion of underrepresented and heterogeneous voices as authors and

peer reviewers. "
899. https://twitter.com/HTTPArchive/status/1508506002383069192
900. https://github.com/HTTPArchive/almanac.httparchive.org/discussions/2165
901. https://github.com/HTTPArchive/custom-metrics

Appendix A : Methodology

2022 Web Almanac by HTTP Archive 717

https://twitter.com/HTTPArchive/status/1508506002383069192
http://127.0.0.1:8080/en/2019/methodology#brainstorming
https://github.com/HTTPArchive/almanac.httparchive.org/discussions/2165
https://github.com/HTTPArchive/custom-metrics

were created to fill gaps in our analytic capabilities.

Throughout June 2022, the HTTP Archive data pipeline crawled several million websites,

gathering the metadata to be used in the Web Almanac. These results were post-processed and

saved to BigQuery902.

Being our fourth year, we were able to update and reuse the queries written by previous

analysts. Still, there were many new metrics that needed to be written from scratch. You can

browse all of the queries by year and chapter in our open source query repository903 on GitHub.

Interpretation

Authors worked with analysts to correctly interpret the results and draw appropriate

conclusions. As authors wrote their respective chapters, they drew from these statistics to

support their framing of the state of the web. Peer reviewers worked with authors to ensure

the technical correctness of their analysis.

To make the results more easily understandable to readers, web developers and analysts

created data visualizations to embed in the chapter. Some visualizations are simplified to make

the points more clearly. For example, rather than showing a full distribution, only a handful of

percentiles are shown. Unless otherwise noted, all distributions are summarized using

percentiles, especially medians (the 50th percentile), and not averages.

Finally, editors revised the chapters to fix simple grammatical errors and ensure consistency

across the reading experience.

Looking ahead

The 2022 edition of the Web Almanac is the fourth in what we hope to continue as an annual

tradition in the web community of introspection and a commitment to positive change. Getting

to this point has been a monumental effort thanks to many dedicated contributors and we hope

to leverage as much of this work as possible to make future editions even more streamlined.

If you’re interested in contributing to the 2023 edition of the Web Almanac, please fill out our

interest form904. Let’s work together to track the state of the web!

902. https://console.cloud.google.com/bigquery?p=httparchive&d=almanac&page=dataset
903. https://github.com/HTTPArchive/almanac.httparchive.org/tree/main/sql/2022
904. https://forms.gle/zmk6wXfDrmkkKzXo8

Appendix A : Methodology

718 2022 Web Almanac by HTTP Archive

https://console.cloud.google.com/bigquery?p=httparchive&d=almanac&page=dataset
https://github.com/HTTPArchive/almanac.httparchive.org/tree/main/sql/2022
https://forms.gle/zmk6wXfDrmkkKzXo8

Appendix B

Contributors

The Web Almanac has been made possible by the hard work of the web community. 116 people

have volunteered countless hours in the planning, research, writing and production phases of

the 2022 Web Almanac.

Aaron Gustafson
@AaronGustafson

aarongustafson

https://www.aaron-gustafson.com
Reviewer

Abel Mathew
@DesignrKnight

DesignrKnight

http://designrknight.com/
Editor

Adriana Jara
@tropicadri

tropicadri
Reviewer

Akshay Ranganath
@rakshay

akshay-ranganath

akshayranganath

https://akshayranganath.github.io/
Analyst and Author

Alex Denning
@AlexDenning

alexdenning

https://getellipsis.com/
Reviewer

Alex N. Jose
@4x13

alexnj

alexnj

https://alexnj.com
Reviewer

Allen ONeill
@DataBytesAI

DataBytzAI

allenoneill

https://webdataworks.io/
Author

Alon Kochba
@alonkochba

alonkochba

alonkochba
Reviewer

Andrea Volpini
@cyberandy

cyberandy

https://wordlift.io/blog/en/entity/

andrea-volpini
Author

Arik Smith
4upz

Analyst

Barry Pollard
@tunetheweb

tunetheweb

tunetheweb

https://www.tunetheweb.com
Analyst, Developer, Editor, Project Lead,
and Reviewer

Appendix B : Contributors

2022 Web Almanac by HTTP Archive 719

https://twitter.com/AaronGustafson
https://github.com/aarongustafson
http://127.0.0.1:8080/en/2022/AaronGustafson
https://twitter.com/DesignrKnight
https://github.com/DesignrKnight
http://127.0.0.1:8080/en/2022/DesignrKnight
https://twitter.com/tropicadri
https://github.com/tropicadri
https://twitter.com/rakshay
https://github.com/akshay-ranganath
https://www.linkedin.com/in/rakshay
http://127.0.0.1:8080/en/2022/rakshay
https://twitter.com/AlexDenning
https://github.com/alexdenning
http://127.0.0.1:8080/en/2022/AlexDenning
https://twitter.com/4x13
https://github.com/alexnj
https://www.linkedin.com/in/4x13
http://127.0.0.1:8080/en/2022/4x13
https://twitter.com/DataBytesAI
https://github.com/DataBytzAI
https://www.linkedin.com/in/DataBytesAI
http://127.0.0.1:8080/en/2022/DataBytesAI
https://twitter.com/alonkochba
https://github.com/alonkochba
https://www.linkedin.com/in/alonkochba
https://twitter.com/cyberandy
https://github.com/cyberandy
http://127.0.0.1:8080/en/2022/cyberandy
https://github.com/4upz
https://twitter.com/tunetheweb
https://github.com/tunetheweb
https://www.linkedin.com/in/tunetheweb
http://127.0.0.1:8080/en/2022/tunetheweb

Belem Zhang
@ibelem

ibelem
Translator

Ben Smith
binji

https://binji.github.io
Reviewer

Beth Pan
@beth_panx

beth-panx
Analyst and Reviewer

Bram Stein
@bram_stein

bramstein

http://www.bramstein.com/
Analyst and Author

Brian Clark
@_clarkio

clarkio

https://www.clarkio.com
Author

Brian Kardell
@briankardell

bkardell

https://bkardell.com
Author and Reviewer

Caleb Queern
@httpsecheaders

cqueern
Reviewer

Cameron Casher
camcash17

Analyst

Carlos Castro
@mxcarloscastro

carloscastromx

https://carloscm.me/en/
Translator

Chris Adams
mrchrisadams

https://chrisadams.me.uk
Reviewer

Chris Lilley
@svgeesus

svgeesus

https://svgees.us
Reviewer

Chris Steele
CSteele-gh

Reviewer

Christian Liebel
@christianliebel

christianliebel

https://christianliebel.com
Reviewer

Cindy Krum
@suzzicks

Suzzicks

https://mobilemoxie.com/
Author

Colin Eberhardt
@ColinEberhardt

ColinEberhardt

https://blog.scottlogic.com/

ceberhardt/
Author

Colt Sliva
@signorcolt

csliva
Analyst

Dan Knauss
dknauss

https://newlocalmedia.com
Editor and Reviewer

Danielle Rohe
@d4ni_s

drohe

https://www.digital-danielle.com
Analyst

Appendix B : Contributors

720 2022 Web Almanac by HTTP Archive

https://twitter.com/ibelem
https://github.com/ibelem
https://github.com/binji
https://twitter.com/beth_panx
https://github.com/beth-panx
https://twitter.com/bram_stein
https://github.com/bramstein
http://127.0.0.1:8080/en/2022/bram_stein
https://twitter.com/_clarkio
https://github.com/clarkio
http://127.0.0.1:8080/en/2022/_clarkio
https://twitter.com/briankardell
https://github.com/bkardell
http://127.0.0.1:8080/en/2022/briankardell
https://twitter.com/httpsecheaders
https://github.com/cqueern
https://github.com/camcash17
https://twitter.com/mxcarloscastro
https://github.com/carloscastromx
http://127.0.0.1:8080/en/2022/mxcarloscastro
https://github.com/mrchrisadams
https://twitter.com/svgeesus
https://github.com/svgeesus
http://127.0.0.1:8080/en/2022/svgeesus
https://github.com/CSteele-gh
https://twitter.com/christianliebel
https://github.com/christianliebel
http://127.0.0.1:8080/en/2022/christianliebel
https://twitter.com/suzzicks
https://github.com/Suzzicks
http://127.0.0.1:8080/en/2022/suzzicks
https://twitter.com/ColinEberhardt
https://github.com/ColinEberhardt
http://127.0.0.1:8080/en/2022/ColinEberhardt
https://twitter.com/signorcolt
https://github.com/csliva
https://github.com/dknauss
https://twitter.com/d4ni_s
https://github.com/drohe
http://127.0.0.1:8080/en/2022/d4ni_s

Dave Smart
@davewsmart

dwsmart

https://tamethebots.com
Author and Reviewer

David Fox
@theobto

foxdavidj

https://www.lookzook.com
Project Lead and Reviewer

Derek Perkins
derekperkins

http://derekperkins.com
Analyst

Diego Gonzalez
@diekus

diekus

https://diek.us
Author

Edmond de Tournadre
Djohn12

Reviewer

Eric A. Meyer
@meyerweb

meyerweb

http://meyerweb.com/
Reviewer

Eric Portis
@etportis

eeeps

https://ericportis.com
Analyst and Author

Estelle Weyl
@estellevw

estelle

http://standardista.com
Reviewer

Eugenia Zigisova
@jevgeniazi

imeugenia

https://github.com/imeugenia/

speaking/blob/main/README.md
Author

Fershad Irani
@fershad

fershad

https://www.fershad.com
Analyst

Gerry McGovern
gerrymcgovernireland

Author

Gertjan Franken
GJFR

Analyst

Giulia Laco
@webmatter_it

webmatter-it

https://www.webmatter.it/
Translator

Haren Bhandari
harendra

Analyst and Author

Hemanth HM
@gnumanth

hemanth

http://h3manth.com
Reviewer

Houssein Djirdeh
@hdjirdeh

housseindjirdeh

https://houssein.me
Reviewer

Ingvar Stepanyan
@RReverser

RReverser

https://rreverser.com/
Reviewer

Iskander Sanchez-Rola
iskander-sanchez-rola

https://iskander-sanchez-rola.com/
Reviewer

Appendix B : Contributors

2022 Web Almanac by HTTP Archive 721

https://twitter.com/davewsmart
https://github.com/dwsmart
http://127.0.0.1:8080/en/2022/davewsmart
https://twitter.com/theobto
https://github.com/foxdavidj
http://127.0.0.1:8080/en/2022/theobto
https://github.com/derekperkins
https://twitter.com/diekus
https://github.com/diekus
http://127.0.0.1:8080/en/2022/diekus
https://github.com/Djohn12
https://twitter.com/meyerweb
https://github.com/meyerweb
http://127.0.0.1:8080/en/2022/meyerweb
https://twitter.com/etportis
https://github.com/eeeps
http://127.0.0.1:8080/en/2022/etportis
https://twitter.com/estellevw
https://github.com/estelle
http://127.0.0.1:8080/en/2022/estellevw
https://twitter.com/jevgeniazi
https://github.com/imeugenia
http://127.0.0.1:8080/en/2022/jevgeniazi
https://twitter.com/fershad
https://github.com/fershad
http://127.0.0.1:8080/en/2022/fershad
https://github.com/gerrymcgovernireland
https://github.com/GJFR
https://twitter.com/webmatter_it
https://github.com/webmatter-it
http://127.0.0.1:8080/en/2022/webmatter_it
https://github.com/harendra
https://twitter.com/gnumanth
https://github.com/hemanth
http://127.0.0.1:8080/en/2022/gnumanth
https://twitter.com/hdjirdeh
https://github.com/housseindjirdeh
http://127.0.0.1:8080/en/2022/hdjirdeh
https://twitter.com/RReverser
https://github.com/RReverser
http://127.0.0.1:8080/en/2022/RReverser
https://github.com/iskander-sanchez-rola

Itamar Blauer
@ItamarBlauer

itamarblauer

https://www.itamarblauer.com/
Author

JR Oakes
@jroakes

jroakes
Analyst

Jamie Indigo
@Jammer_Volts

fellowhuman1101

https://not-a-robot.com
Author

Jamie Macdonald
JamieWhitMac

Analyst

Jasmine Drudge-Willson
JasmineDW

Editor

Jens Oliver Meiert
@j9t

j9t

https://meiert.com/en/
Author and Reviewer

Jeremy Wagner
@malchata

malchata

https://jlwagner.net/
Author

Joe Viggiano
joeviggiano

Analyst and Author

John Murch
@johnmurch

johnmurch

http://www.johnmurch.com
Reviewer

Jonathan Wold
@sirjonathan

sirjonathan

https://jonathanwold.com
Author

Jono Alderson
@jonoalderson

jonoalderson

https://www.jonoalderson.com
Reviewer

José Solé
@jmsoleb

jmsole

https://www.jmsole.cl/
Reviewer

Kai Hollberg
@schweinepriestr

Schweinepriester
Reviewer

Kanmi Obasa
@kanmiobasa

konfirmed

https://www.knfrmd.com
Analyst and Reviewer

Kevin Farrugia
@imkevdev

kevinfarrugia

https://imkev.dev
Analyst and Reviewer

Kirsty Simmonds
@keinegurke_

dereknahman

https://kirsty.codes
Editor

Kushal Das
@kushaldas

kushaldas

https://kushaldas.in
Reviewer

Laurent Devernay
@ldevernay

ldevernay

https://ldevernay.github.io/
Author

Appendix B : Contributors

722 2022 Web Almanac by HTTP Archive

https://twitter.com/ItamarBlauer
https://github.com/itamarblauer
http://127.0.0.1:8080/en/2022/ItamarBlauer
https://twitter.com/jroakes
https://github.com/jroakes
https://twitter.com/Jammer_Volts
https://github.com/fellowhuman1101
http://127.0.0.1:8080/en/2022/Jammer_Volts
https://github.com/JamieWhitMac
https://github.com/JasmineDW
https://twitter.com/j9t
https://github.com/j9t
http://127.0.0.1:8080/en/2022/j9t
https://twitter.com/malchata
https://github.com/malchata
http://127.0.0.1:8080/en/2022/malchata
https://github.com/joeviggiano
https://twitter.com/johnmurch
https://github.com/johnmurch
http://127.0.0.1:8080/en/2022/johnmurch
https://twitter.com/sirjonathan
https://github.com/sirjonathan
http://127.0.0.1:8080/en/2022/sirjonathan
https://twitter.com/jonoalderson
https://github.com/jonoalderson
http://127.0.0.1:8080/en/2022/jonoalderson
https://twitter.com/jmsoleb
https://github.com/jmsole
http://127.0.0.1:8080/en/2022/jmsoleb
https://twitter.com/schweinepriestr
https://github.com/Schweinepriester
https://twitter.com/kanmiobasa
https://github.com/konfirmed
http://127.0.0.1:8080/en/2022/kanmiobasa
https://twitter.com/imkevdev
https://github.com/kevinfarrugia
http://127.0.0.1:8080/en/2022/imkevdev
https://twitter.com/keinegurke_
https://github.com/dereknahman
http://127.0.0.1:8080/en/2022/keinegurke_
https://twitter.com/kushaldas
https://github.com/kushaldas
http://127.0.0.1:8080/en/2022/kushaldas
https://twitter.com/ldevernay
https://github.com/ldevernay
http://127.0.0.1:8080/en/2022/ldevernay

Laurie Voss
seldo

http://seldo.com
Analyst and Author

Liran Tal
@liran_tal

lirantal

https://twitter.com/liran_tal
Author

Lucas Pardue
@SimmerVigor

LPardue

https://lucaspardue.com
Reviewer

Max Ostapenko
@themax_o

max-ostapenko

https://maxostapenko.com
Analyst

Maxim Salnikov
@webmaxru

webmaxru

https://medium.com/@webmaxru
Reviewer

Melissa Ada
@mel_melificent

mel-ada

mel-ada
Author

Michael Lewittes
MichaelLewittes

Editor

Michael Solati
@MichaelSolati

MichaelSolati

https://michaelsolati.com
Author

Michelle O'Connor
Designer

Minko Gechev
@mgechev

mgechev

https://blog.mgechev.com/
Reviewer

Mobeen Ali
@mobeenali97

mobeenali97

https://siffar.com
Reviewer

Mordy Oberstein
mordy-oberstein

Author

Nicolas Hoizey
@nhoizey

nhoizey

https://nicolas-hoizey.com/
Reviewer

Nishu Goel
@TheNishuGoel

NishuGoel

https://unravelweb.dev/
Analyst and Reviewer

Nurullah Demir
@nrllah

nrllh

https://www.internet-sicherheit.de/

team/demir-nurullah.html
Author

Pankaj Parkar
@pankajparkar

pankajparkar

https://pankajparkar.dev
Reviewer

Patrick Meenan
@patmeenan

pmeenan

https://www.webpagetest.org/
Reviewer

Patrick Stox
@patrickstox

patrickstox

https://patrickstox.com
Reviewer

Appendix B : Contributors

2022 Web Almanac by HTTP Archive 723

https://github.com/seldo
https://twitter.com/liran_tal
https://github.com/lirantal
http://127.0.0.1:8080/en/2022/liran_tal
https://twitter.com/SimmerVigor
https://github.com/LPardue
http://127.0.0.1:8080/en/2022/SimmerVigor
https://twitter.com/themax_o
https://github.com/max-ostapenko
http://127.0.0.1:8080/en/2022/themax_o
https://twitter.com/webmaxru
https://github.com/webmaxru
http://127.0.0.1:8080/en/2022/webmaxru
https://twitter.com/mel_melificent
https://github.com/mel-ada
https://www.linkedin.com/in/mel_melificent
https://github.com/MichaelLewittes
https://twitter.com/MichaelSolati
https://github.com/MichaelSolati
http://127.0.0.1:8080/en/2022/MichaelSolati
https://twitter.com/mgechev
https://github.com/mgechev
http://127.0.0.1:8080/en/2022/mgechev
https://twitter.com/mobeenali97
https://github.com/mobeenali97
http://127.0.0.1:8080/en/2022/mobeenali97
https://github.com/mordy-oberstein
https://twitter.com/nhoizey
https://github.com/nhoizey
http://127.0.0.1:8080/en/2022/nhoizey
https://twitter.com/TheNishuGoel
https://github.com/NishuGoel
http://127.0.0.1:8080/en/2022/TheNishuGoel
https://twitter.com/nrllah
https://github.com/nrllh
http://127.0.0.1:8080/en/2022/nrllah
https://twitter.com/pankajparkar
https://github.com/pankajparkar
http://127.0.0.1:8080/en/2022/pankajparkar
https://twitter.com/patmeenan
https://github.com/pmeenan
http://127.0.0.1:8080/en/2022/patmeenan
https://twitter.com/patrickstox
https://github.com/patrickstox
http://127.0.0.1:8080/en/2022/patrickstox

Paul Calvano
@paulcalvano

paulcalvano

https://paulcalvano.com
Project Lead

Philip Jägenstedt
foolip

https://foolip.org/
Reviewer

Pilar Mera
@DecreceFeliz

decrecementofeliz

http://pi-comunicacion.com
Translator

Prathamesh Rasam
25prathamesh

prathameshrasam
Analyst and Reviewer

Rachel Andrew
@rachelandrew

rachelandrew

https://rachelandrew.co.uk
Author

Rick Viscomi
@rick_viscomi

rviscomi

https://rviscomi.dev/
Analyst, Author, Editor, and Project Lead

Rob Teitelman
@teitelmanrob

SeoRobt

https://www.paulteitelman.com/
Reviewer

Robin Marx
@programmingart

rmarx

http://internetonmars.org
Reviewer

Roel Nieskens
@PixelAmbacht

RoelN

http://pixelambacht.nl
Reviewer

Sakae Kotaro
@beltway7

ksakae1216

https://ksakae1216.com/
Translator

Salma Alam-Naylor
@whitep4nth3r

whitep4nth3r

https://whitep4nth3r.com/
Author

Saptak Sengupta
@Saptak013

SaptakS

https://saptaks.website
Author

Scott Davis
@scottdavis99

scottdavis99

http://thirstyhead.com
Author

Shaina Hantsis
shantsis

Designer, Editor, and Reviewer

Sia Karamalegos
@TheGreenGreek

siakaramalegos

karamalegos

https://sia.codes
Analyst and Project Lead

Simon Pieters
@zcorpan

zcorpan
Reviewer

Siwin Lo
siwinlo

Editor

Sophie Brannon
@SophieBrannon

SophieBrannon
Author

Appendix B : Contributors

724 2022 Web Almanac by HTTP Archive

https://twitter.com/paulcalvano
https://github.com/paulcalvano
http://127.0.0.1:8080/en/2022/paulcalvano
https://github.com/foolip
https://twitter.com/DecreceFeliz
https://github.com/decrecementofeliz
http://127.0.0.1:8080/en/2022/DecreceFeliz
https://github.com/25prathamesh
https://www.linkedin.com/in/
https://twitter.com/rachelandrew
https://github.com/rachelandrew
http://127.0.0.1:8080/en/2022/rachelandrew
https://twitter.com/rick_viscomi
https://github.com/rviscomi
http://127.0.0.1:8080/en/2022/rick_viscomi
https://twitter.com/teitelmanrob
https://github.com/SeoRobt
http://127.0.0.1:8080/en/2022/teitelmanrob
https://twitter.com/programmingart
https://github.com/rmarx
http://127.0.0.1:8080/en/2022/programmingart
https://twitter.com/PixelAmbacht
https://github.com/RoelN
http://127.0.0.1:8080/en/2022/PixelAmbacht
https://twitter.com/beltway7
https://github.com/ksakae1216
http://127.0.0.1:8080/en/2022/beltway7
https://twitter.com/whitep4nth3r
https://github.com/whitep4nth3r
http://127.0.0.1:8080/en/2022/whitep4nth3r
https://twitter.com/Saptak013
https://github.com/SaptakS
http://127.0.0.1:8080/en/2022/Saptak013
https://twitter.com/scottdavis99
https://github.com/scottdavis99
http://127.0.0.1:8080/en/2022/scottdavis99
https://github.com/shantsis
https://twitter.com/TheGreenGreek
https://github.com/siakaramalegos
https://www.linkedin.com/in/TheGreenGreek
http://127.0.0.1:8080/en/2022/TheGreenGreek
https://twitter.com/zcorpan
https://github.com/zcorpan
https://github.com/siwinlo
https://twitter.com/SophieBrannon
https://github.com/SophieBrannon

Thibaud Colas
@thibaud_colas

thibaudcolas

https://thib.me/
Analyst and Author

Thomas Steiner
@tomayac

tomayac

https://blog.tomayac.com/
Reviewer

Tim Frick
@timfrick

timfrick

https://www.mightybytes.com/
Author

Tom Van Goethem
@tomvangoethem

tomvangoethem

https://tom.vg/
Author

Tushar Pol
TusharPol

Reviewer

Vaspol Ruamviboonsuk
@paivaspol

paivaspol

vaspol-ruamviboonsuk-7898b824
Analyst and Author

Victor Le Pochat
@VictorLePochat

VictorLeP

victor-le-pochat

https://lepoch.at
Analyst

Vik Vanderlinden
vikvanderlinden

Analyst

William Sandres
@hakacode

HakaCode

https://hakacode.github.io
Translator

Xavier Jouvenot
@10xLearner

Xav83

xavier-jouvenot-98787794

https://10xlearner.com/
Translator

Yana Dimova
ydimova

Analyst

Yoav Weiss
@yoavweiss

yoavweiss

https://blog.yoav.ws
Reviewer

Yutaka Oka
ytkoka

Reviewer

Zhiwei Li
Levix

Translator

Zongchao Bai
luckybai

Translator

Appendix B : Contributors

2022 Web Almanac by HTTP Archive 725

https://twitter.com/thibaud_colas
https://github.com/thibaudcolas
http://127.0.0.1:8080/en/2022/thibaud_colas
https://twitter.com/tomayac
https://github.com/tomayac
http://127.0.0.1:8080/en/2022/tomayac
https://twitter.com/timfrick
https://github.com/timfrick
http://127.0.0.1:8080/en/2022/timfrick
https://twitter.com/tomvangoethem
https://github.com/tomvangoethem
http://127.0.0.1:8080/en/2022/tomvangoethem
https://github.com/TusharPol
https://twitter.com/paivaspol
https://github.com/paivaspol
https://www.linkedin.com/in/paivaspol
https://twitter.com/VictorLePochat
https://github.com/VictorLeP
https://www.linkedin.com/in/VictorLePochat
http://127.0.0.1:8080/en/2022/VictorLePochat
https://github.com/vikvanderlinden
https://twitter.com/hakacode
https://github.com/HakaCode
http://127.0.0.1:8080/en/2022/hakacode
https://twitter.com/10xLearner
https://github.com/Xav83
https://www.linkedin.com/in/10xLearner
http://127.0.0.1:8080/en/2022/10xLearner
https://github.com/ydimova
https://twitter.com/yoavweiss
https://github.com/yoavweiss
http://127.0.0.1:8080/en/2022/yoavweiss
https://github.com/ytkoka
https://github.com/Levix
https://github.com/luckybai

	2022Web Almanac
	HTTP Archive’s annualstate of the web report

	Table of Contents
	Part I. Page Content
	Part II. User Experience
	Part III. Content Publishing
	Part IV. Content Distribution
	Appendices

	CSS
	Introduction
	Usage
	Selectors and the cascade
	Class names
	!important
	Selector specificity
	Pseudo-classes and -elements
	Attribute selectors

	Values and Units
	Length
	Calculations

	Global keywords
	Custom Properties
	Types
	Properties
	Functions
	Complexity

	Colors
	Alpha support and use
	New color properties and values

	Gradients and Images
	Image formats
	Number of images in CSS
	Weight of images in CSS
	Pixel size of images in CSS

	Layout
	Flexbox and grid adoption
	Box sizing
	Multicolumn
	The aspect-ratio property

	Transitions and animations
	Visual Effects
	Responsive design
	Common breakpoints

	Properties changed in queries
	Feature Queries
	Internationalization
	Direction

	Logical and physical properties
	Ruby

	CSS in JS
	Houdini
	Sass
	CSS for print
	Paged media

	Meta
	Declaration repetition
	Shorthands and longhands
	Unrecoverable syntax errors

	Nonexistent properties
	Conclusion
	Author

	JavaScript
	Introduction
	How much JavaScript do we load?
	JavaScript requests per page
	How is JavaScript processed?
	Bundlers
	Transpilers

	How is JavaScript requested?
	async, defer, module, and nomodule
	preload, prefetch, and modulepreload
	JavaScript in the <head>
	Injected scripts
	First-party versus third-party JavaScript
	Requests
	Bytes

	Dynamic import()
	Web workers
	Worklets

	How is JavaScript delivered?
	Compression
	Minification
	Source maps

	Responsiveness
	Metrics
	Long tasks/blocking time
	Scheduler API
	Synchronous XHR
	document.write
	Legacy JavaScript

	How is JavaScript used?
	Libraries and frameworks
	Library usage
	Libraries used together
	Security vulnerabilities

	Web components and shadow DOM

	Conclusion
	Author

	Markup
	Introduction
	Document data
	Doctypes
	Compression
	Languages
	Conformance
	Document size

	Elements
	Element diversity
	Top elements
	Custom elements
	Obsolete elements

	Attributes
	Top attributes
	data-* attributes
	Social markup

	Conclusion
	Author

	Structured Data
	Introduction
	Data caveats
	Key concepts
	Linked data
	Open data
	Semantic search engines, rich results and beyond

	Structured Data research
	Knowledge graphs
	Question Answering over Knowledge Graphs
	Explainable AI

	Open source use of Structured Data
	Use cases
	Data linking
	Search Engine Optimization & discoverability
	Ecommerce & business

	A year in review
	RDFa
	Dublin Core
	Open Graph
	Twitter
	Facebook
	Microformats and microformats2
	Microdata
	JSON-LD
	JSON-LD Relationships
	SameAs
	Further JSON-LD insights - relative changes

	Conclusion
	Authors

	Fonts
	Introduction
	Performance
	Hosting
	File sizes
	OpenType table sizes
	Outline formats
	Resource hints
	font-display

	Font usage
	Families & foundries
	OpenType features
	Writing system and languages
	Generic font families
	Font smoothing

	Variable fonts
	Color fonts
	Conclusion
	Author

	Media
	Introduction
	Images
	Image resources
	A note on single-pixel images
	Image dimensions
	Image aspect ratios
	Image color spaces

	Encoding
	Format adoption
	Bytesizes
	Bits per pixel
	Bits per pixel, by format
	GIFs, animated and not

	Embedding
	Lazy-loading
	alt text
	srcset
	sizes
	<picture>

	Layout
	Layout widths
	Intrinsic vs extrinsic sizing
	height, width, and Cumulative Layout Shifts

	Delivery
	Cross-domain image hosts

	Video
	Video adoption
	Video durations
	Format adoption
	Embedding
	preload
	src and <source>

	Conclusion
	Authors

	WebAssembly
	Introduction
	Methodology
	How widely is WebAssembly being used?
	What is WebAssembly being used for?
	What languages are people using?
	What features are being used?
	Conclusions
	Author

	Third Parties
	Introduction
	Definitions
	Third-party categories
	Caveats

	Prevalence
	Performance impact
	Web performance best practices
	Minifying resources
	Compressing resources
	Usage of third-party facades
	Usage of async and defer
	Legacy JavaScript
	Other optimization technologies

	Conclusion
	Author

	Interoperability
	Introduction
	Compat 2021
	Grid
	Flexbox
	Sticky positioning
	CSS transforms
	aspect-ratio

	Interop 2022
	Bugs
	Forms
	Scrolling
	Typography and Encodings

	Completing Implementations
	<dialog>
	CSS containment
	Subgrid

	New Features
	Color Spaces and Functions
	Viewport Units
	Cascade Layers

	Conclusion
	Author

	SEO
	Introduction
	Crawlability and indexability
	Robots.txt
	Robots.txt status codes
	Robots.txt size
	Robots.txt user-agent usage

	IndexIfEmbedded tag
	Invalid head elements

	Canonical tags
	HTML vs. HTTP canonical usage
	Raw vs. rendered usage

	Page experience
	HTTPS
	Mobile friendliness
	Viewport meta tag
	Vary header usage
	Legible font sizes
	Core Web Vitals (CWV)
	lazy loading vs. eager loading iframes

	On page
	Meta data
	<title> element
	Meta description tag
	Header tags

	Image attributes
	Image loading property usage
	Word count
	Rendered word count
	Raw word count

	Structured Data
	Most popular Structured Data formats
	Most popular schema types

	Links
	Non-descriptive link text
	Outgoing links
	Anchor rel attribute use

	AMP
	Internationalization
	Hreflang usage
	Content language usage

	Conclusion
	Authors

	Accessibility
	Introduction
	Ease of reading
	Color contrast
	Zooming and scaling
	Language identification
	User preference
	Forced colors mode

	Navigation
	Focus indication
	Focus styles
	tabindex

	Landmarks
	Heading hierarchy
	Secondary navigation
	Skip links
	Document titles
	Tables

	Forms
	<label> element
	placeholder attribute
	Requiring information
	Captchas

	Media on the web
	Images
	Audio and video

	Assistive technology with ARIA
	ARIA roles
	Using the presentation role
	Labeling elements with ARIA
	Hiding content
	Screen reader-only text
	Dynamically-rendered content

	Accessibility apps and overlays
	Concerns with overlays

	Conclusion
	Authors

	Performance
	Introduction
	Core Web Vitals
	Largest Contentful Paint (LCP)
	Time to First Byte (TTFB)
	First Contentful Paint (FCP)
	LCP metadata and best practices
	Render-blocking resources
	LCP content types
	LCP prioritization
	LCP static discoverability
	LCP preloading
	LCP initiator
	LCP lazy-loading
	LCP size
	LCP format
	LCP image optimization
	LCP host

	LCP conclusions

	Cumulative Layout Shift (CLS)
	CLS metadata and best practices
	Explicit dimensions
	Animations
	Fonts
	bfcache eligibility

	CLS conclusions

	First Input Delay (FID)
	FID metadata and best practices
	Disabling double-tap to zoom
	Total Blocking Time (TBT)
	Long tasks

	Interaction to Next Paint (INP)
	INP by rank
	INP as a hypothetical CWV metric
	INP and TBT

	FID conclusions

	Conclusion
	Authors

	Privacy
	Introduction
	Online tracking
	Third-party tracking
	(Re)targeting
	Third-party cookies
	Evasion technique: fingerprinting
	Evasion technique: CNAME tracking

	Access to (sensitive) data from the browser
	Sensor events
	Media devices
	Geolocation

	Established controls to improve visitor’s privacy
	Permissions Policy
	Referrer Policy
	User-Agent Client Hints

	New efforts to improve privacy by the browser
	Privacy Sandbox Origin Trial
	Privacy Sandbox experiments

	Compliance with privacy regulations
	Consent Management Platforms
	IAB consent frameworks
	Privacy policy

	Conclusion
	Authors

	Security
	Introduction
	Transport security
	Protocol versions
	Cipher suites
	Certificate Authority
	HTTP Strict Transport Security

	Cookies
	Cookie attributes
	Cookie age

	Content inclusion
	Content Security Policy
	Subresource Integrity
	Permissions Policy
	Iframe Sandbox

	Attack preventions
	Security header adoptions
	Preventing attacks using CSP
	Preventing attacks using Cross-Origin policies
	Preventing attacks using Clear-Site-Data
	Preventing attacks using <meta>
	Web Cryptography API
	Bot protection services

	Drivers of security mechanism adoption
	Location of website
	Technology stack
	Website popularity

	Malpractices on the web
	Well-known URIs
	security.txt
	change-password
	Detecting Status Code Reliability

	Conclusion
	Authors

	Mobile Web
	Introduction
	Worldwide connectivity
	Traffic from mobile versus desktop

	Communication from the mobile web
	Alternative protocol links
	Input fields
	Advanced input types

	Accessibility on the mobile web
	Color contrast
	Tap targets
	Zooming and scaling

	Mobile performance
	Core Web Vitals
	Loading performance metrics
	Time to First Byte (TTFB)
	Largest Contentful Paint (LCP)

	Images
	Appropriately sized images
	Responsive images
	Lazy-loading

	Layout stability
	Cumulative Layout Shift (CLS)

	Responsiveness
	First Input Delay (FID)
	Interaction to Next Paint (INP)

	Conclusion
	Author

	Capabilities
	Introduction
	Methodology
	Async Clipboard API
	Write access
	Read access
	Growth of the Async Clipboard API

	Web Share API
	Growth of the Web Share API

	Add to Home Screen
	Usage of Add to Home Screen

	Media Session API
	Usage of the Media Session API

	Device Memory API
	Usage of the Device Memory API

	Service Worker API
	Growth of the Service Worker API

	Gamepad API
	Growth of the Gamepad API

	Push API
	Usage of the Push API

	Project Fugu
	Conclusion
	Author

	PWA
	Introduction
	Service workers
	Service worker usage
	Service worker events
	Lifecycle events
	Notification-related events
	Background processing events

	Other popular SW features

	Web App Manifest
	Manifest properties
	display property
	icons property
	Installation and discoverability properties
	Manifest categories
	Advanced capabilities
	Manifest preferring native

	Fugu APIs
	PWA insights from Lighthouse
	Lighthouse audits
	Lighthouse scores

	Service worker libraries
	Workbox usage
	Workbox packages

	Web Push Notifications
	Web Push notification acceptance rates

	Conclusion
	Author

	CMS
	Introduction
	What is a CMS?
	CMS adoption
	CMS adoption by geography
	CMS adoption by rank

	Most popular CMSs
	CMS user experience
	Core Web Vitals
	Largest Contentful Paint (LCP)
	First Input Delay (FID)
	Cumulative Layout Shift (CLS)

	Lighthouse
	Performance score
	SEO score
	Accessibility score
	Best practices

	Resource weights
	Page weight breakdown
	Images
	JavaScript
	HTML document
	CSS
	Fonts

	WordPress in 2022
	Adoption by geography
	Passing CWVs by geography
	Plugins

	Conclusion
	Author

	Jamstack
	Introduction
	Quantifying the Jamstack: what counts?
	Is every static site a Jamstack site?
	Does a Jamstack site have to use JavaScript?
	Does using the Jamstack mean a specific framework?
	Does a Jamstack site have to be performant?

	Defining the metrics
	“Jamstack-y”: a disclaimer
	The growth of the Jamstack
	Jamstack-y frameworks
	Jamstack-y hosting
	Conclusion
	Authors

	Sustainability
	Introduction
	Limitations and hypothesis
	Intersectional environmental issues
	Understanding the environmental impact of the web

	Evaluating the environmental impact of websites
	Page weight
	Carbon emissions
	Number of requests
	More sustainable hosting
	How many of the sites listed in the HTTP Archive run on green hosting?

	Reducing the environmental impact of websites
	Avoiding waste
	Loading unused assets
	Fonts
	Unused CSS
	Unused JavaScript

	Sustainable UX
	Designing for stakeholders
	Optimizing user journeys
	Empowering sustainable behavior
	Designing for circularity and end-of-Life

	Optimizing your content
	Image optimization
	Format (WebP/AVIF)
	Responsiveness, size, and quality
	Lazy-loading

	Video
	Preload
	Autoplay

	Animations
	Favicon and error pages

	Optimizing external content
	Third parties
	Making third-party requests more sustainable

	Implementing technical optimizations
	JavaScript
	Minification
	Including as little as possible directly in HTML

	CSS
	Minification
	Including as little as possible directly in HTML

	CDN
	Text compression
	Caching

	SEO and sustainability
	Sustainable data and content management
	Popular frameworks, platforms, and CMSs
	Conclusion
	Actions you can take

	Authors

	Page Weight
	Introduction
	What is page weight?
	Storage
	Transmission
	Rendering

	What are we shipping?
	Images
	JavaScript
	Third-party services
	Other assets

	Page weight by the numbers
	Requests volume
	Request bytes
	Content type and file formats
	Image bytes
	Video bytes

	Adoption rates of byte-saving technologies
	Facades for videos & other embeds
	Compression
	Minification
	Caching and CDNs

	Conclusion
	Authors

	CDN
	Introduction
	What is a CDN?
	Caveats and disclaimers

	CDN adoption
	Top CDN providers
	TLS usage
	TLS adoption impact
	TLS performance impact

	HTTP/2+ adoption
	Brotli adoption
	Client Hint adoption
	Image format adoption
	Conclusion
	Authors

	HTTP
	Introduction
	Evolution of HTTP
	HTTP/2 adoption
	Benefits of HTTP/2 and HTTP/3
	Multiplexing requests over a single connection
	Resource prioritization
	HTTP/2 Push
	Alternatives to HTTP/2 Push
	Preload
	103 Early Hints

	HTTP/3
	Benefits of HTTP/3
	HTTP/3 support

	Conclusion
	Author

	Methodology
	Overview
	About the dataset
	Websites
	Metrics

	Tools
	WebPageTest
	Lighthouse
	Wappalyzer
	Chrome UX Report
	Blink Features
	Third Party Web
	Rework CSS
	Rework Utils
	Parsel

	Analytical process
	Planning
	Analysis
	Interpretation

	Looking ahead

	Contributors

